Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genes Dev ; 29(12): 1326-40, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26109053

RESUMEN

Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structural studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/H4 exchange as measured by H3K56ac and new H3 deposition. These interactions are also crucial for the inhibition of spurious transcription from within coding regions. Together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.


Asunto(s)
Chaperonas de Histonas/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Complejos Multiproteicos , Nucleosomas/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sales (Química)/química , Relación Estructura-Actividad , Transcripción Genética
2.
Nucleic Acids Res ; 46(15): 7612-7630, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29905868

RESUMEN

CK2 is an essential protein kinase implicated in various cellular processes. In this study, we address a potential role of this kinase in chromatin modulations associated with transcription. We found that CK2 depletion from yeast cells leads to replication-independent increase of histone H3K56 acetylation and global activation of H3 turnover in coding regions. This suggests a positive role of CK2 in maintenance/recycling of the histone H3/H4 tetramers during transcription. Interestingly, strand-specific RNA-seq analyses show that CK2 inhibits global cryptic promoters driving both sense and antisense transcription. This further indicates a role of CK2 in the modulation of chromatin during transcription. Next, we showed that CK2 interacts with the major histone chaperone Spt6, and phosphorylates it in vivo and in vitro. CK2 phosphorylation of Spt6 is required for its cellular levels, for the suppression of histone H3 turnover and for the inhibition of spurious transcription. Finally, we showed that CK2 and Spt6 phosphorylation sites are important to various transcriptional responses suggesting that cryptic intragenic and antisense transcript production are associated with a defective adaptation to environmental cues. Altogether, our data indicate that CK2 mediated phosphorylation of Spt6 regulates chromatin dynamics associated with transcription, and prevents aberrant transcription.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Acetilación , Quinasa de la Caseína II/genética , Cromatina/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Chaperonas de Histonas/genética , Fosforilación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética
3.
Mol Cell ; 41(5): 502-14, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362547

RESUMEN

The many factors that control chromatin biology play key roles in essential nuclear functions like transcription, DNA damage response and repair, recombination, and replication and are critical for proper cell-cycle progression, stem cell renewal, differentiation, and development. These players belong to four broad classes: histone modifiers, chromatin remodelers, histone variants, and histone chaperones. A large number of studies have established the existence of an intricate functional crosstalk between the different factors, not only within a single class but also between different classes. In light of this, while many recent reviews have focused on structure and functions of histone chaperones, the current text highlights novel and striking links that have been established between these proteins and posttranslational modifications of histones and discusses the functional consequences of this crosstalk. These findings feed a current hot question of how cell memory may be maintained through epigenetic mechanisms involving histone chaperones.


Asunto(s)
Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Ciclo Celular , Cromatina/química , ADN/química , Daño del ADN , Replicación del ADN , Dimerización , Epigénesis Genética , Histonas/química , Humanos , Modelos Biológicos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 33(12): 1397-415, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24843044

RESUMEN

The NuA4 histone acetyltransferase complex is required for gene regulation, cell cycle progression, and DNA repair. Dissection of the 13-subunit complex reveals that the Eaf7 subunit bridges Eaf5 with Eaf3, a H3K36me3-binding chromodomain protein, and this Eaf5/7/3 trimer is anchored to NuA4 through Eaf5. This trimeric subcomplex represents a functional module, and a large portion exists in a native form outside the NuA4 complex. Gene-specific and genome-wide location analyses indicate that Eaf5/7/3 correlates with transcription activity and is enriched over the coding region. In agreement with a role in transcription elongation, the Eaf5/7/3 trimer interacts with phosphorylated RNA polymerase II and helps its progression. Loss of Eaf5/7/3 partially suppresses intragenic cryptic transcription arising in set2 mutants, supporting a role in nucleosome destabilization. On the other hand, loss of the trimer leads to an increase of replication-independent histone exchange over the coding region of transcribed genes. Taken together, these results lead to a model where Eaf5/7/3 associates with elongating polymerase to promote the disruption of nucleosomes in its path, but also their refolding in its wake.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Histona Acetiltransferasas/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Nucleosomas/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetiltransferasas/metabolismo , Western Blotting , Inmunoprecipitación de Cromatina , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 26(4): 1496-509, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449659

RESUMEN

Spt2/Sin1 is a DNA binding protein with HMG-like domains that has been suggested to play a role in chromatin-mediated transcription in Saccharomyces cerevisiae. Previous studies have suggested models in which Spt2 plays an inhibitory role in the initiation of transcription of certain genes. In this work, we have taken several approaches to study Spt2 in greater detail. Our results have identified previously unknown genetic interactions between spt2Delta and mutations in genes encoding transcription elongation factors, including members of the PAF and HIR/HPC complexes. In addition, genome-wide and gene-specific chromatin immunoprecipitation analyses suggest that Spt2 is primarily associated with coding regions in a transcription-dependent fashion. Furthermore, our results show that Spt2, like other elongation factors, is required for the repression of transcription from a cryptic promoter within a coding region and that Spt2 is also required for repression of recombination within transcribed regions. Finally, we provide evidence that Spt2 plays a role in regulating the levels of histone H3 over transcribed regions. Taken together, our results suggest a direct link for Spt2 with transcription elongation, chromatin dynamics, and genome stability.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genes Fúngicos , Inestabilidad Genómica , Chaperonas de Histonas , Histonas/metabolismo , Complejos Multiproteicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinación Genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
6.
Genetics ; 177(1): 101-12, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17603125

RESUMEN

A previous study of histone H3 in Saccharomyces cerevisiae identified a mutant with a single amino acid change, leucine 61 to tryptophan, that confers several transcriptional defects. We now present several lines of evidence that this H3 mutant, H3-L61W, is impaired at the level of transcription elongation, likely by altered interactions with the conserved factor Spt16, a subunit of the transcription elongation complex yFACT. First, a selection for suppressors of the H3-L61W cold-sensitive phenotype has identified novel mutations in the gene encoding Spt16. These genetic interactions are allele specific, suggesting a direct interaction between H3 and Spt16. Second, similar to several other elongation and chromatin mutants, including spt16 mutants, an H3-L61W mutant allows transcription from a cryptic promoter within the FLO8 coding region. Finally, chromatin-immunoprecipitation experiments show that in an H3-L61W mutant there is a dramatically altered profile of Spt16 association over transcribed regions, with reduced levels over 5'-coding regions and elevated levels over the 3' regions. Taken together, these and other results provide strong evidence that the integrity of histone H3 is crucial for ensuring proper distribution of Spt16 across transcribed genes and suggest a model for the mechanism by which Spt16 normally dissociates from DNA following transcription.


Asunto(s)
Proteínas de Ciclo Celular/genética , Regulación Fúngica de la Expresión Génica , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Histonas/metabolismo , Mutación/genética , Nucleosomas , Plásmidos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional
7.
Mol Cell Biol ; 33(21): 4198-211, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23979598

RESUMEN

Spt2/Sin1 is a DNA binding protein with HMG-like domains. It plays a role in chromatin modulations associated with transcription elongation in Saccharomyces cerevisiae. Spt2 maintains the nucleosome level in coding regions and is important for the inhibition of spurious transcription in yeast. In this work, we undertook a biochemical approach to identify Spt2-interacting partners. Interestingly, casein kinase 2 (CK2) interacts with Spt2 and phosphorylates it in vitro as well as in vivo on two small regions, region I (RI) (amino acids 226 to 230) and RII (amino acids 277 to 281), located in its essential C-terminal domain. Mutation of the phosphorylation sites in RI and RII to acidic residues, thereby mimicking CK2 phosphorylation, leads to the inhibition of Spt2 function in the repression of spurious transcription and to a loss of its recruitment to coding regions. Inversely, depleting cells of CK2 activity leads to an increased Spt2 association with genes. We further show that Spt2 physically interacts with the essential histone chaperone Spt6 and that this association is inhibited in vitro and in vivo by CK2-dependent phosphorylation. Taken together, our data suggest that CK2 regulates the function of Spt2 by modulating its interaction with chromatin and the histone chaperone Spt6.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Quinasa de la Caseína II/química , Quinasa de la Caseína II/aislamiento & purificación , Dominio Catalítico , Cromatina/genética , Cromatina/metabolismo , Cromatografía de Afinidad , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Sistemas de Lectura Abierta , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Serina/metabolismo , Tirosina/metabolismo
8.
Mol Cell Biol ; 31(6): 1288-300, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220514

RESUMEN

Spt2 is a chromatin component with roles in transcription and posttranscriptional regulation. Recently, we found that Spt2 travels with RNA polymerase II (RNAP II), is involved in elongation, and plays important roles in chromatin modulations associated with this process. In this work, we dissect the function of Spt2 in the repression of SER3. This gene is repressed by a transcription interference mechanism involving the transcription of an adjacent intergenic region, SRG1, that leads to the production of a noncoding RNA (ncRNA). We find that Spt2 and Spt6 are required for the repression of SER3 by SRG1 transcription. Intriguingly, we demonstrate that these effects are not mediated through modulations of the SRG1 transcription rate. Instead, we show that the SRG1 region overlapping the SER3 promoter is occluded by randomly positioned nucleosomes that are deposited behind RNAP II transcribing SRG1 and that their deposition is dependent on the presence of Spt2. Our data indicate that Spt2 is required for the major chromatin deposition pathway that uses old histones to refold nucleosomes in the wake of RNAP II at the SRG1-SER3 locus. Altogether, these observations suggest a new mechanism of repression by ncRNA transcription involving a repressive nucleosomal structure produced by an Spt2-dependent pathway following RNAP II passage.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Fosfoglicerato-Deshidrogenasa/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Chaperonas de Histonas , Histonas/metabolismo , Metilación , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
9.
J Biol Chem ; 283(41): 27350-27354, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18708354

RESUMEN

Rtt106 is a histone chaperone that has been suggested to play a role in heterochromatin-mediated silencing in Saccharomyces cerevisiae. It interacts physically and functionally with the chromatin assembly factor-1 (CAF-1), which is associated with replication-coupled nucleosomal deposition. In this work, we have taken several approaches to study Rtt106 in greater detail and have identified a previously unknown function of Rtt106. We found genetic interactions between rtt106Delta and mutations in genes encoding transcription elongation factors, including Spt6, TFIIS, and members of the PAF and yeast DSIF complexes. In addition, chromatin immunoprecipitation analysis indicates that Rtt106 is associated with transcribed regions of active genes. Furthermore, our results show that Rtt106 is required for the repression of transcription from a cryptic promoter within a coding region. This observation strongly suggests that Rtt106 is involved in the regulation of chromatin structure of transcribed regions. Finally, we provide evidence that Rtt106 plays a role in regulating the levels of histone H3 transcription-coupled deposition over transcribed regions. Taken together, our results indicate a direct link for Rtt106 with transcription elongation and the chromatin dynamics associated with RNA polymerase II passage.


Asunto(s)
Silenciador del Gen/fisiología , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología , Factor 1 de Ensamblaje de la Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
10.
Mol Cell Biol ; 28(7): 2257-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18212047

RESUMEN

Eaf1 (for Esa1-associated factor 1) and Eaf2 have been identified as stable subunits of NuA4, a yeast histone H4/H2A acetyltransferase complex implicated in gene regulation and DNA repair. While both SWI3-ADA2-N-CoR-TF IIIB domain-containing proteins are required for normal cell cycle progression, their depletion does not affect the global Esa1-dependent acetylation of histones. In contrast to all other subunits, Eaf1 is found exclusively associated with the NuA4 complex in vivo. It serves as a platform that coordinates the assembly of functional groups of subunits into the native NuA4 complex. Eaf1 shows structural similarities with human p400/Domino, a subunit of the NuA4-related TIP60 complex. On the other hand, p400 also possesses an SWI2/SNF2 family ATPase domain that is absent from the yeast NuA4 complex. This domain is highly related to the yeast Swr1 protein, which is responsible for the incorporation of histone variant H2AZ in chromatin. Since all of the components of the TIP60 complex are homologous to SWR1 or NuA4 subunits, we proposed that the human complex corresponds to a physical merge of two yeast complexes. p400 function in TIP60 then would be accomplished in yeast by cooperation between SWR1 and NuA4. In agreement with such a model, NuA4 and SWR1 mutants show strong genetic interactions, NuA4 affects histone H2AZ incorporation/acetylation in vivo, and both preset the PHO5 promoter for activation. Interestingly, the expression of a chimeric Eaf1-Swr1 protein recreates a single human-like complex in yeast cells. Our results identified the key central subunit for the structure and functions of the NuA4 histone acetyltransferase complex and functionally linked this activity with the histone variant H2AZ from yeast to human cells.


Asunto(s)
Acetiltransferasas/fisiología , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , Histona Acetiltransferasas/fisiología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Acetilación , Acetiltransferasas/química , Fosfatasa Ácida , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Células Eucariotas/metabolismo , Evolución Molecular , Histona Acetiltransferasas/química , Humanos , Lisina Acetiltransferasa 5 , Regiones Promotoras Genéticas , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad
11.
Mol Cell ; 27(3): 393-405, 2007 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-17679090

RESUMEN

In yeast, histone H3/H4 exchange independent of replication is poorly understood. Here, we analyzed the deposition of histone H3 molecules, synthesized during G1, using a high-density microarray histone exchange assay. While we found that H3 exchange in coding regions requires high levels of transcription, promoters exchange H3 molecules in the absence of transcription. In inactive promoters, H3 is deposited predominantly in well-positioned nucleosomes surrounding nucleosome-free regions, indicating that some nucleosomes in promoters are dynamic. This could facilitate induction of repressed genes. Importantly, we show that histone H3 K56 acetylation, a replication-associated mark, is also present in replication-independent newly assembled nucleosomes and correlates perfectly with the deposition of new H3. Finally, we found that transcription-dependent incorporation of H3 at promoters is highly dependent on Asf1. Taken together, our data underline the dynamic nature of replication-independent nucleosome assembly/disassembly, specify a link to transcription, and implicate Asf1 and H3 K56 acetylation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN , Genoma Fúngico , Histonas/genética , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetilación , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Citosol , Células HeLa , Histonas/metabolismo , Humanos , Inmunoprecipitación , Chaperonas Moleculares , Procesamiento Proteico-Postraduccional , Fase S , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
EMBO J ; 23(13): 2597-607, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15175650

RESUMEN

The remodeling of the promoter chromatin structure is a key event for the induction of the PHO5 gene. Two DNA-binding proteins Pho2 and Pho4 are critical for this step. We found that the NuA4 histone acetyltransferase complex is essential for PHO5 transcriptional induction without affecting Pho4 translocation upon phosphate starvation. Our data also indicate that NuA4 is critical for the chromatin remodeling event that occurs over the PHO5 promoter prior to activation. Using Chromatin IP analysis, we found that Esa1-dependent histone H4 acetylation at the PHO5 promoter correlates with specific recruitment of the NuA4 complex to this locus under repressing conditions. We demonstrate that the homeodomain transcriptional activator Pho2 is responsible for this recruitment in vivo and interacts directly with the NuA4 complex. Finally, we show that Pho4 is unable to bind the PHO5 promoter without prior action of NuA4. These results indicate that, before induction, NuA4 complex recruitment by Pho2 is an essential event that presets the PHO5 promoter for subsequent binding by Pho4, chromatin remodeling and transcription.


Asunto(s)
Acetiltransferasas/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Fosfatasa Ácida , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Proteínas Fúngicas/genética , Histona Acetiltransferasas , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
13.
J Biol Chem ; 278(21): 19171-5, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12672825

RESUMEN

The inhibitor-of-growth (ING) family of proteins was founded by human ING1, a tumor suppressor interacting with p53 in vivo and required for its function in transcription/apoptosis. There are five different ING genes in humans, three of which have been linked to p53 function. In this study, we analyzed the three ING family members present in yeast. We demonstrate that each one is purified as a key component of a specific histone-modifying complex. Pho23 is part of Rpd3/Sin3 histone deacetylase complex, while Yng1 and Yng2 are subunits of the NuA3 and NuA4 histone acetyltransferase complexes, respectively. We also show that the three different ING proteins have opposite roles in transcriptional activation by p53 in vivo. These effects are linked to the presence of each ING in its respective chromatin modifying complex, since mutation of the corresponding catalytic subunit gave similar results. Depletion of Pho23/Rpd3 leads to increased p53-dependent transcription in vivo while depletion of Yng2 abrogates it. Surprisingly, deletion of YNG1 or SAS3 leads to increased transcriptional activation by p53. These data suggest that the NuA3 complex can function in gene-specific repression, an unusual role for a histone acetyltransferase complex. They also demonstrate the key specific role of ING proteins in different chromatin modifying complexes and their opposite functions in p53-dependent transcription.


Asunto(s)
Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/farmacología , Acetiltransferasas , Northern Blotting , Cromatina/metabolismo , Eliminación de Gen , Histona Acetiltransferasas , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/aislamiento & purificación , ARN Mensajero/análisis , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA