RESUMEN
Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.
Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrolloRESUMEN
To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.
Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica/genética , Corteza Prefrontal/embriología , Telencéfalo/embriología , Animales , Trastorno Autístico/genética , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Eucromatina/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Ontología de Genes , Predisposición Genética a la Enfermedad , Edad Gestacional , Humanos , Ratones , Ratones Transgénicos , Motivos de Nucleótidos , Mutación Puntual , Corteza Prefrontal/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal , Telencéfalo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Direct comparisons of human and non-human primate brains can reveal molecular pathways underlying remarkable specializations of the human brain. However, chimpanzee tissue is inaccessible during neocortical neurogenesis when differences in brain size first appear. To identify human-specific features of cortical development, we leveraged recent innovations that permit generating pluripotent stem cell-derived cerebral organoids from chimpanzee. Despite metabolic differences, organoid models preserve gene regulatory networks related to primary cell types and developmental processes. We further identified 261 differentially expressed genes in human compared to both chimpanzee organoids and macaque cortex, enriched for recent gene duplications, and including multiple regulators of PI3K-AKT-mTOR signaling. We observed increased activation of this pathway in human radial glia, dependent on two receptors upregulated specifically in human: INSR and ITGB8. Our findings establish a platform for systematic analysis of molecular changes contributing to human brain development and evolution.
Asunto(s)
Corteza Cerebral/citología , Organoides/metabolismo , Animales , Evolución Biológica , Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/genética , Corteza Cerebral/metabolismo , Redes Reguladoras de Genes/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Macaca , Neurogénesis/genética , Organoides/crecimiento & desarrollo , Pan troglodytes , Células Madre Pluripotentes/citología , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma/genéticaRESUMEN
Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.
Asunto(s)
Encéfalo/embriología , Corteza Cerebral/fisiología , Neurogénesis/fisiología , Receptor Notch2/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Femenino , Eliminación de Gen , Genes Reporteros , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análisis de Secuencia de ARNRESUMEN
Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.
Asunto(s)
Mapeo Cromosómico/métodos , Trastornos del Neurodesarrollo/genética , Biología de Sistemas/métodos , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Neurobiología/métodos , NeuropsiquiatríaRESUMEN
Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.
Asunto(s)
Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Animales , Ciclo Celular , Humanos , Macaca , Ratones , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Neuroglía/citología , Neuroglía/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Nicho de Células MadreRESUMEN
Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.
Asunto(s)
Encéfalo , Neurofisiología , Neurociencias , Análisis de la Célula Individual , Humanos , Encéfalo/citología , Encéfalo/fisiología , Neuropatología/métodos , Neuropatología/tendencias , Neurofisiología/métodos , Neurofisiología/tendencias , Neurociencias/métodos , Neurociencias/tendencias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Flujo de Trabajo , AnimalesRESUMEN
The human hippocampus and prefrontal cortex play critical roles in learning and cognition1,2, yet the dynamic molecular characteristics of their development remain enigmatic. Here we investigated the epigenomic and three-dimensional chromatin conformational reorganization during the development of the hippocampus and prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation generated by single-nucleus methyl-3C sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally separated from chromatin conformation dynamics. Using single-cell profiling and multimodal single-molecule imaging approaches, we have found that short-range chromatin interactions are enriched in neurons, whereas long-range interactions are enriched in glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type development and differentiation, finding putatively causal common variants for schizophrenia strongly overlapping with chromatin loop-connected, cell-type-specific regulatory regions. Our data provide multimodal resources for studying gene regulatory dynamics in brain development and demonstrate that single-cell three-dimensional multi-omics is a powerful approach for dissecting neuropsychiatric risk loci.
RESUMEN
The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.
Asunto(s)
Linaje de la Célula , Corteza Cerebral , Interneuronas , Inhibición Neural , Neuronas , Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Humanos , Interneuronas/citología , Neuronas/citologíaRESUMEN
Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)1, and recent studies have identified primate-specific neuronal populations at the molecular level2. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific TAC3 striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Asunto(s)
Evolución Biológica , Cuerpo Estriado , Desarrollo Embrionario , Macaca , Neurogénesis , Neuronas , Bulbo Olfatorio , Animales , Cuerpo Estriado/crecimiento & desarrollo , Neuronas Dopaminérgicas , Femenino , Macaca/crecimiento & desarrollo , Mamíferos , Ratones , Neurogénesis/fisiología , Bulbo Olfatorio/fisiología , Embarazo , PrimatesRESUMEN
During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.
Asunto(s)
Encéfalo , Linaje de la Célula , Neuronas GABAérgicas , Células-Madre Neurales , Neurogénesis , Animales , Encéfalo/citología , Diferenciación Celular , Desarrollo Embrionario , Neuronas GABAérgicas/citología , Ratones , Mitosis , Células-Madre Neurales/citología , Neurogénesis/genética , TranscriptomaRESUMEN
The human brain is subdivided into distinct anatomical structures, including the neocortex, which in turn encompasses dozens of distinct specialized cortical areas. Early morphogenetic gradients are known to establish early brain regions and cortical areas, but how early patterns result in finer and more discrete spatial differences remains poorly understood1. Here we use single-cell RNA sequencing to profile ten major brain structures and six neocortical areas during peak neurogenesis and early gliogenesis. Within the neocortex, we find that early in the second trimester, a large number of genes are differentially expressed across distinct cortical areas in all cell types, including radial glia, the neural progenitors of the cortex. However, the abundance of areal transcriptomic signatures increases as radial glia differentiate into intermediate progenitor cells and ultimately give rise to excitatory neurons. Using an automated, multiplexed single-molecule fluorescent in situ hybridization approach, we find that laminar gene-expression patterns are highly dynamic across cortical regions. Together, our data suggest that early cortical areal patterning is defined by strong, mutually exclusive frontal and occipital gene-expression signatures, with resulting gradients giving rise to the specification of areas between these two poles throughout successive developmental timepoints.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Neocórtex/citología , Neocórtex/embriología , Atlas como Asunto , Secuencia de Bases , Biomarcadores/metabolismo , Humanos , Neocórtex/metabolismo , Neurogénesis , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Factores de TiempoRESUMEN
During mammalian development, differences in chromatin state coincide with cellular differentiation and reflect changes in the gene regulatory landscape1. In the developing brain, cell fate specification and topographic identity are important for defining cell identity2 and confer selective vulnerabilities to neurodevelopmental disorders3. Here, to identify cell-type-specific chromatin accessibility patterns in the developing human brain, we used a single-cell assay for transposase accessibility by sequencing (scATAC-seq) in primary tissue samples from the human forebrain. We applied unbiased analyses to identify genomic loci that undergo extensive cell-type- and brain-region-specific changes in accessibility during neurogenesis, and an integrative analysis to predict cell-type-specific candidate regulatory elements. We found that cerebral organoids recapitulate most putative cell-type-specific enhancer accessibility patterns but lack many cell-type-specific open chromatin regions that are found in vivo. Systematic comparison of chromatin accessibility across brain regions revealed unexpected diversity among neural progenitor cells in the cerebral cortex and implicated retinoic acid signalling in the specification of neuronal lineage identity in the prefrontal cortex. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.
Asunto(s)
Encéfalo/citología , Epigenómica , Neurogénesis , Análisis de la Célula Individual , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Susceptibilidad a Enfermedades , Elementos de Facilitación Genéticos , Humanos , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Tretinoina/metabolismoRESUMEN
Cortical organoids are self-organizing three-dimensional cultures that model features of the developing human cerebral cortex1,2. However, the fidelity of organoid models remains unclear3-5. Here we analyse the transcriptomes of individual primary human cortical cells from different developmental periods and cortical areas. We find that cortical development is characterized by progenitor maturation trajectories, the emergence of diverse cell subtypes and areal specification of newborn neurons. By contrast, organoids contain broad cell classes, but do not recapitulate distinct cellular subtype identities and appropriate progenitor maturation. Although the molecular signatures of cortical areas emerge in organoid neurons, they are not spatially segregated. Organoids also ectopically activate cellular stress pathways, which impairs cell-type specification. However, organoid stress and subtype defects are alleviated by transplantation into the mouse cortex. Together, these datasets and analytical tools provide a framework for evaluating and improving the accuracy of cortical organoids as models of human brain development.
Asunto(s)
Corteza Cerebral , Neurogénesis , Estrés Fisiológico , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Humanos , Neuronas , Organoides , Análisis de la Célula Individual , Técnicas de Cultivo de TejidosRESUMEN
Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance (P < 3.64e-7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on single-cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This large-scale integrative analysis identifies candidates and functional subsets of NDD genes.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Niño , Masculino , Femenino , Humanos , Trastorno Autístico/genética , Trastorno del Espectro Autista/genética , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Exoma , Histona Desacetilasas/genética , Proteínas Represoras/genética , Proteínas Portadoras/genéticaRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.
Asunto(s)
Astrocitos , Corteza Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima Convertidora de Angiotensina 2/metabolismo , Astrocitos/enzimología , Astrocitos/virología , Corteza Cerebral/virología , Humanos , Organoides/virología , Cultivo Primario de Células , SARS-CoV-2/fisiologíaRESUMEN
SUMMARY: As the use of single-cell technologies has grown, so has the need for tools to explore these large, complicated datasets. The UCSC Cell Browser is a tool that allows scientists to visualize gene expression and metadata annotation distribution throughout a single-cell dataset or multiple datasets. AVAILABILITY AND IMPLEMENTATION: We provide the UCSC Cell Browser as a free website where scientists can explore a growing collection of single-cell datasets and a freely available python package for scientists to create stable, self-contained visualizations for their own single-cell datasets. Learn more at https://cells.ucsc.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Genómica , Programas Informáticos , Bases de Datos Genéticas , MetadatosRESUMEN
Despite the importance of duplicate genes for evolutionary adaptation, accurate gene annotation is often incomplete, incorrect, or lacking in regions of segmental duplication. We developed an approach combining long-read sequencing and hybridization capture to yield full-length transcript information and confidently distinguish between nearly identical genes/paralogs. We used biotinylated probes to enrich for full-length cDNA from duplicated regions, which were then amplified, size-fractionated, and sequenced using single-molecule, long-read sequencing technology, permitting us to distinguish between highly identical genes by virtue of multiple paralogous sequence variants. We examined 19 gene families as expressed in developing and adult human brain, selected for their high sequence identity (average >99%) and overlap with human-specific segmental duplications (SDs). We characterized the transcriptional differences between related paralogs to better understand the birth-death process of duplicate genes and particularly how the process leads to gene innovation. In 48% of the cases, we find that the expressed duplicates have changed substantially from their ancestral models due to novel sites of transcription initiation, splicing, and polyadenylation, as well as fusion transcripts that connect duplication-derived exons with neighboring genes. We detect unannotated open reading frames in genes currently annotated as pseudogenes, while relegating other duplicates to nonfunctional status. Our method significantly improves gene annotation, specifically defining full-length transcripts, isoforms, and open reading frames for new genes in highly identical SDs. The approach will be more broadly applicable to genes in structurally complex regions of other genomes where the duplication process creates novel genes important for adaptive traits.