Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
J Cell Sci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940185

RESUMEN

Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to characteristic properties of N-terminal targeting peptides (TP) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs (synTPs) and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TP is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.

2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34011609

RESUMEN

Transitions between separate sexes (dioecy) and other mating systems are common across eukaryotes. Here, we study a change in a haploid dioecious green algal species with male- and female-determining chromosomes (U and V). The genus Volvox is an oogamous (with large, immotile female gametes and small, motile male gametes) and includes both heterothallic species (with distinct male and female genotypes, associated with a mating-type system that prevents fusion of gametes of the same sex) and homothallic species (bisexual, with the ability to self-fertilize). We date the origin of an expanded sex-determining region (SDR) in Volvox to at least 75 Mya, suggesting that homothallism represents a breakdown of dioecy (heterothallism). We investigated the involvement of the SDR of the U and V chromosomes in this transition. Using de novo whole-genome sequences, we identified a heteromorphic SDR of ca 1 Mbp in male and female genotypes of the heterothallic species Volvox reticuliferus and a homologous region (SDLR) in the closely related homothallic species Volvox africanus, which retained several different hallmark features of an SDR. The V. africanus SDLR includes a large region resembling the female SDR of the presumptive heterothallic ancestor, whereas most genes from the male SDR are absent. However, we found a multicopy array of the male-determining gene, MID, in a different genomic location from the SDLR. Thus, in V. africanus, an ancestrally female genotype may have acquired MID and thereby gained male traits.


Asunto(s)
Genoma , Haploidia , Filogenia , Volvox/genética , Proteínas Algáceas , Evolución Biológica , Mapeo Cromosómico , Células Germinativas , Reproducción , Volvox/clasificación
3.
BMC Microbiol ; 23(1): 16, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650459

RESUMEN

BACKGROUND: Astrephomene is an interesting green algal genus that, together with Volvox, shows convergent evolution of spheroidal multicellular bodies with somatic cells of the colonial or multicellular volvocine lineage. A recent whole-genome analysis of A. gubernaculifera resolved the molecular-genetic basis of such convergent evolution, and two species of Astrephomene were described. However, maintenance of culture strains of Astrephomene requires rapid inoculation of living cultures, and cryopreserved culture strains have not been established in public culture collections. RESULTS: To establish cryopreserved culture strains of two species of Astrephomene, conditions for cryopreservation of the two species were investigated using immature and mature vegetative colonies and two cryoprotectants: N,N-dimethylformamide (DMF) and hydroxyacetone (HA). Rates of cell survival of the A. gubernaculifera or A. perforata strain after two-step cooling and freezing in liquid nitrogen were compared between different concentrations (3 and 6%) of DMF and HA and two types of colonies: immature colonies (small colonies newly released from the parent) and mature colonies (large colonies just before daughter colony formation). The highest rate of survival [11 ± 13% (0.36-33%) by the most probable number (MPN) method] of A. gubernaculifera strain NIES-4017 (established in 2014) was obtained when culture samples of immature colonies were subjected to cryogenic treatment with 6% DMF. In contrast, culture samples of mature colonies subjected to 3% HA cryogenic treatment showed the highest "MPN survival" [5.5 ± 5.9% (0.12-12%)] in A. perforata. Using the optimized cryopreservation conditions for each species, survival after freezing in liquid nitrogen was examined for six other strains of A. gubernaculifera (established from 1962 to 1981) and another A. perforata strain maintained in the Microbial Culture Collection at the National Institute for Environmental Studies (MCC-NIES). We obtained ≥0.1% MPN survival of the A. perforata strain. However, only two of the six strains of A. gubernaculifera showed ≥0.1% MPN survival. By using the optimal cryopreserved conditions obtained for each species, five cryopreserved strains of two species of Astrephomene were established and deposited in the MCC-NIES. CONCLUSIONS: The optimal cryopreservation conditions differed between the two species of Astrephomene. Cryopreservation of long-term-maintained strains of A. gubernaculifera may be difficult; further studies of cryopreservation of these strains are needed.


Asunto(s)
Chlorophyta , Chlorophyta/genética , Criopreservación/métodos , Congelación , Dimetilformamida
4.
BMC Microbiol ; 22(1): 103, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35421922

RESUMEN

BACKGROUND: Colonial and multicellular volvocine green algae have been extensively studied recently in various fields of the biological sciences. However, only one species (Pandorina morum) has been cryopreserved in public culture collections. RESULTS: Here, we investigated conditions for cryopreservation of the multicellular volvocine alga Gonium pectorale using vegetative colonies or cells and zygotes. Rates of vegetative cell survival in a G. pectorale strain after two-step cooling and freezing in liquid nitrogen were compared between different concentrations (3% and 6%) of the cryoprotectant N,N-dimethylformamide (DMF) and two types of tubes (0.2-mL polymerase chain reaction tubes and 2-mL cryotubes) used for cryopreservation. Among the four conditions investigated, the highest rate of survival [2.7 ± 3.6% (0.54-10%) by the most probable number (MPN) method] was obtained when 2.0-mL cryotubes containing 1.0 mL of culture samples with 6% DMF were subjected to cryogenic treatment. Using these optimized cryopreservation conditions, survival rates after freezing in liquid nitrogen were examined for twelve other strains of G. pectorale and twelve strains of five other Gonium species. We obtained ≥ 0.1% MPN survival in nine of the twelve G. pectorale strains tested. However, < 0.1% MPN survival was detected in eleven of twelve strains of five other Gonium species. In total, ten cryopreserved strains of G. pectorale were newly established in the Microbial Culture Collection at the National Institute for Environmental Studies. Although the cryopreservation of zygotes of volvocine algae has not been previously reported, high rates (approximately 60%) of G. pectorale zygote germination were observed after thawing zygotes that had been cryopreserved with 5% or 10% methanol as the cryoprotectant during two-step cooling and freezing in liquid nitrogen. CONCLUSIONS: The present study demonstrated that cryopreservation of G. pectorale is possible with 6% DMF as a cryoprotectant and 1.0-mL culture samples in 2.0-mL cryotubes subjected to two-step cooling in a programmable freezer.


Asunto(s)
Chlorophyta , Cigoto , Criopreservación , Nitrógeno , Filogenia
5.
Proc Natl Acad Sci U S A ; 114(39): E8304-E8313, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893987

RESUMEN

Some microalgae are adapted to extremely acidic environments in which toxic metals are present at high levels. However, little is known about how acidophilic algae evolved from their respective neutrophilic ancestors by adapting to particular acidic environments. To gain insights into this issue, we determined the draft genome sequence of the acidophilic green alga Chlamydomonas eustigma and performed comparative genome and transcriptome analyses between Ceustigma and its neutrophilic relative Chlamydomonas reinhardtii The results revealed the following features in Ceustigma that probably contributed to the adaptation to an acidic environment. Genes encoding heat-shock proteins and plasma membrane H+-ATPase are highly expressed in Ceustigma This species has also lost fermentation pathways that acidify the cytosol and has acquired an energy shuttle and buffering system and arsenic detoxification genes through horizontal gene transfer. Moreover, the arsenic detoxification genes have been multiplied in the genome. These features have also been found in other acidophilic green and red algae, suggesting the existence of common mechanisms in the adaptation to acidic environments.


Asunto(s)
Adaptación Fisiológica/genética , Chlamydomonas reinhardtii/genética , Genoma de Planta , Proteínas de Plantas/genética , Chlamydomonas reinhardtii/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Plantas/metabolismo
6.
BMC Evol Biol ; 19(1): 120, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185890

RESUMEN

BACKGROUND: Volvocine algae provide a suitable model for investigation of the evolution of multicellular organisms. Within this group, evolution of the body plan from flattened to spheroidal colonies is thought to have occurred independently in two different lineages, Volvocaceae and Astrephomene. Volvocacean species undergo inversion to form a spheroidal cell layer following successive cell divisions during embryogenesis. During inversion, the daughter protoplasts change their shape and develop acute chloroplast ends (opposite to basal bodies). By contrast, Astrephomene does not undergo inversion; rather, its daughter protoplasts rotate during successive cell divisions to form a spheroidal colony. However, the evolutionary pathways of these cellular events involved in the two tactics for formation of spheroidal colony are unclear, since the embryogenesis of extant volvocine genera with ancestral flattened colonies, such as Gonium and Tetrabaena, has not previously been investigated in detail. RESULTS: We conducted time-lapse imaging by light microscopy and indirect immunofluorescence microscopy with staining of basal bodies, nuclei, and microtubules to observe embryogenesis in G. pectorale and T. socialis, which form 16-celled or 4-celled flattened colonies, respectively. In G. pectorale, a cup-shaped cell layer of the 16-celled embryo underwent gradual expansion after successive cell divisions, with the apical ends (position of basal bodies) of the square embryo's peripheral protoplasts separated from each other. In T. socialis, on the other hand, there was no apparent expansion of the daughter protoplasts in 4-celled embryos after successive cell divisions, however the two pairs of diagonally opposed daughter protoplasts shifted slightly and flattened after hatching. Neither of these two species exhibited rotation of daughter protoplasts during successive cell divisions as in Astrephomene or the formation of acute chloroplast ends of daughter protoplasts as in volvocacean inversion. CONCLUSIONS: The present results indicate that the ancestor of Astrephomene might have newly acquired the rotation of daughter protoplasts after it diverged from the ancestor of Gonium, while the ancestor of Volvocaceae might have newly acquired the formation of acute chloroplast ends to complete inversion after divergence from the ancestor of Goniaceae (Gonium and Astrephomene).


Asunto(s)
Evolución Biológica , Chlorophyta/embriología , Cuerpos Basales/metabolismo , División Celular , Núcleo Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/citología , Microtúbulos/metabolismo , Filogenia , Imagen de Lapso de Tiempo
7.
Mol Biol Evol ; 35(4): 855-870, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29294063

RESUMEN

Multicellularity is the premier example of a major evolutionary transition in individuality and was a foundational event in the evolution of macroscopic biodiversity. The volvocine chlorophyte lineage is well suited for studying this process. Extant members span unicellular, simple colonial, and obligate multicellular taxa with germ-soma differentiation. Here, we report the nuclear genome sequence of one of the most morphologically simple organisms in this lineage-the 4-celled colonial Tetrabaena socialis and compare this to the three other complete volvocine nuclear genomes. Using conservative estimates of gene family expansions a minimal set of expanded gene families was identified that associate with the origin of multicellularity. These families are rich in genes related to developmental processes. A subset of these families is lineage specific, which suggests that at a genomic level the evolution of multicellularity also includes lineage-specific molecular developments. Multiple points of evidence associate modifications to the ubiquitin proteasomal pathway (UPP) with the beginning of coloniality. Genes undergoing positive or accelerating selection in the multicellular volvocines were found to be enriched in components of the UPP and gene families gained at the origin of multicellularity include components of the UPP. A defining feature of colonial/multicellular life cycles is the genetic control of cell number. The genomic data presented here, which includes diversification of cell cycle genes and modifications to the UPP, align the genetic components with the evolution of this trait.


Asunto(s)
Evolución Biológica , Chlorophyta/genética , Genes cdc , Componentes Genómicos , Ciclinas/genética , Genes de Retinoblastoma , Familia de Multigenes , Complejo de la Endopetidasa Proteasomal/genética , Selección Genética , Transcriptoma , Ubiquitina/genética
8.
Am Nat ; 192(3): E93-E105, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30125231

RESUMEN

From the male peacock's tail plumage to the floral displays of flowering plants, traits related to sexual reproduction are often complex and exaggerated. Why has sexual reproduction become so complicated? Why have such exaggerated sexual traits evolved? Early work posited a connection between multicellularity and sexual traits such as anisogamy (i.e., the evolution of small sperm and large eggs). Anisogamy then drives the evolution of other forms of sexual dimorphism. Yet the relationship between multicellularity and the evolution of sexual traits has not been empirically tested. Given their extensive variation in both multicellular complexity and sexual systems, the volvocine green algae offer a tractable system for understanding the interrelationship of multicellular complexity and sex. Here we show that species with greater multicellular complexity have a significantly larger number of derived sexual traits, including anisogamy, internal fertilization, and secondary sexual dimorphism. Our results demonstrate that anisogamy repeatedly evolved from isogamous multicellular ancestors and that anisogamous species are larger and produce larger zygotes than isogamous species. In the volvocine algae, the evolution of multicellularity likely drives the evolution of anisogamy, and anisogamy subsequently drives secondary sexual dimorphism. Multicellularity may set the stage for the overall diversity of sexual complexity throughout the Tree of Life.


Asunto(s)
Evolución Biológica , Chlamydomonas reinhardtii/genética , Caracteres Sexuales , Volvox/genética , Meiosis
9.
BMC Evol Biol ; 17(1): 243, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29212441

RESUMEN

BACKGROUND: The volvocine lineage, containing unicellular Chlamydomonas reinhardtii and differentiated multicellular Volvox carteri, is a powerful model for comparative studies aiming at understanding emergence of multicellularity. Tetrabaena socialis is the simplest multicellular volvocine alga and belongs to the family Tetrabaenaceae that is sister to more complex multicellular volvocine families, Goniaceae and Volvocaceae. Thus, T. socialis is a key species to elucidate the initial steps in the evolution of multicellularity. In the asexual life cycle of C. reinhardtii and multicellular volvocine species, reproductive cells form daughter cells/colonies by multiple fission. In embryogenesis of the multicellular species, daughter protoplasts are connected to one another by cytoplasmic bridges formed by incomplete cytokinesis during multiple fission. These bridges are important for arranging the daughter protoplasts in appropriate positions such that species-specific integrated multicellular individuals are shaped. Detailed comparative studies of cytokinesis between unicellular and simple multicellular volvocine species will help to elucidate the emergence of multicellularity from the unicellular ancestor. However, the cytokinesis-related genes between closely related unicellular and multicellular species have not been subjected to a comparative analysis. RESULTS: Here we focused on dynamin-related protein 1 (DRP1), which is known for its role in cytokinesis in land plants. Immunofluorescence microscopy using an antibody against T. socialis DRP1 revealed that volvocine DRP1 was localized to division planes during cytokinesis in unicellular C. reinhardtii and two simple multicellular volvocine species T. socialis and Gonium pectorale. DRP1 signals were mainly observed in the newly formed division planes of unicellular C. reinhardtii during multiple fission, whereas in multicellular T. socialis and G. pectorale, DRP1 signals were observed in all division planes during embryogenesis. CONCLUSIONS: These results indicate that the molecular mechanisms of cytokinesis may be different in unicellular and multicellular volvocine algae. The localization of DRP1 during multiple fission might have been modified in the common ancestor of multicellular volvocine algae. This modification may have been essential for the re-orientation of cells and shaping colonies during the emergence of multicellularity in this lineage.


Asunto(s)
Proteínas Algáceas/genética , Citocinesis/genética , Evolución Molecular , Volvox/citología , Volvox/genética , Funciones de Verosimilitud , Modelos Biológicos , Filogenia , Transporte de Proteínas , Especificidad de la Especie , Fracciones Subcelulares/metabolismo
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(10): 832-840, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225309

RESUMEN

Volvocine algae constitute a green algal lineage comprising unicellular Chlamydomonas, four-celled Tetrabaena, eight to 32-celled Gonium, and others up to Volvox spp., which consist of up to 50,000 cells. These algae proliferate by multiple fissions with cellular growth up to several fold in size and subsequent successive cell divisions. Chlamydomonas reinhardtii cells produce two to 32 daughter cells by one to five divisions, depending on cellular growth in the G1 phase. By contrast, in this study, we found that Tetrabaena socialis and Gonium pectorale cells mostly produced four and eight daughter cells by two and three successive divisions, respectively. In contrast to C. reinhardtii, which is committed to cell division when the cell has grown two-fold, T. socialis and G. pectorale are committed only when the cells have grown four- and eight-fold, respectively. Thus, our results suggest that evolutionary changes in cellular size for commitment largely contributes to the emergence and evolution of multicellularity in volvocine algae.


Asunto(s)
Chlorophyta/citología , Recuento de Células/métodos , Técnicas de Cultivo de Célula/métodos , División Celular , Tamaño de la Célula , Electroforesis en Gel de Poliacrilamida/métodos
12.
Phycologia ; 56(4): 469-475, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375162

RESUMEN

Pleodorina sphaerica Iyengar was considered to be a phylogenetic link between Volvox and the type species Pleodorina californica Shaw because it has small somatic cells distributed from the anterior to posterior poles in 64- or 128-celled vegetative colonies. However, cultural studies and molecular and ultrastructural data are lacking in P. sphaerica, and this species has not been recorded since 1951. Here, we performed light and electron microscopy and molecular phylogeny of P. sphaerica based on newly established culture strains originating from Thailand. Morphological features of the present Thai species agreed well with those of the previous studies of the Indian material of P. sphaerica and with those of the current concept of the advanced members of the Volvocaceae. The present P. sphaerica strains exhibited homothallic sexuality; male and facultative female colonies developed within a single clonal culture. Chloroplast multigene phylogeny demonstrated that P. sphaerica was sister to two other species of Pleodorina (P. californica and Pleodorina japonica Nozaki) without posterior somatic cells, and these three species of Pleodorina formed a robust clade, which was positioned distally in the large monophyletic group including nine taxa of Volvox sect. Merrillosphaera and Volvox (sect. Janetosphaera) aureus Ehrenberg. Based on the present phylogenetic results, evolutionary losses of posterior somatic cells might have occurred in the ancestor of P. californica and P. japonica. Thus, P. sphaerica might represent an ancestral morphology of Pleodorina, rather than of Volvox.

13.
BMC Evol Biol ; 16(1): 243, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27829356

RESUMEN

BACKGROUND: Volvocine algae, which range from the unicellular Chlamydomonas to the multicellular Volvox with a germ-soma division of labor, are a model for the evolution of multicellularity. Within this group, the spheroidal colony might have evolved in two independent lineages: Volvocaceae and the goniacean Astrephomene. Astrephomene produces spheroidal colonies with posterior somatic cells. The feature that distinguishes Astrephomene from the volvocacean algae is lack of inversion during embryogenesis; the volvocacean embryo undergoes inversion after successive divisions to orient flagella toward the outside. The mechanisms of inversion at the molecular and cellular levels in volvocacean algae have been assessed in detail, particularly in Volvox carteri. However, embryogenesis in Astrephomene has not been subjected to such investigations. RESULTS: This study relied on light microscopy time-lapse imaging using an actively growing culture of a newly established strain to conduct a developmental analysis of Astrephomene as well as to perform a comparison with the similar spheroidal volvocacean Eudorina. During the successive divisions involved in Astrephomene embryogenesis, gradual rotation of daughter protoplasts resulted in movement of their apical portions toward the embryonic posterior, forming a convex-to-spheroidal cell sheet with the apical ends of protoplasts on the outside. Differentiation of the posterior somatic cells from the embryo periphery was traced based on cell lineages during embryogenesis. In contrast, in Eudorina, the rotation of daughter protoplasts did not occur during successive cell divisions; however, inversion occurred after such divisions, and a spheroidal embryo was formed. Indirect immunofluorescence microscopy of basal bodies and nuclei verified this difference between Astrephomene and Eudorina in the movement of embryonic protoplasts. CONCLUSIONS: These results suggest different tactics for spheroidal colony formation between the two lineages: rotation of daughter protoplasts during successive cell divisions in Astrephomene, and inversion after cell divisions in Eudorina. This study will facilitate further research into the molecular and genetic mechanisms of the parallel evolution of the spheroidal colony in volvocine algae.


Asunto(s)
Evolución Biológica , Chlorophyta/embriología , Chlorophyta/genética , Cuerpos Basales/metabolismo , División Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Filogenia , Protoplastos/metabolismo , Imagen de Lapso de Tiempo
14.
J Eukaryot Microbiol ; 63(3): 340-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26595722

RESUMEN

The genus Balticola comprises a group of unicellular green flagellate algae and is composed of four species formerly classified in the genus Haematococcus. Balticola is closely related to a colonial green flagellate, Stephanosphaera pluvialis. Although the phylogeny among these genera was previously investigated based on two nuclear gene sequences, the phylogenetic sister of S. pluvialis has yet to be determined. In the present study, the species diversity of Balticola and Stephanosphaera was investigated using 18S rRNA gene sequences, and phylogenetic analyses of combined nuclear and chloroplast gene sequences were performed to understand the evolutionary origin of coloniality in Stephanosphaera. The divergence times of four colonial volvocalean flagellates from their respective unicellular sisters were also estimated. Six Balticola genotypes and a single Stephanosphaera genotype were recognized, and one Balticola genotype was resolved as the sister of S. pluvialis, showing that Balticola is a nonmonophyletic genus. The divergence time of Stephanosphaera from its nearest Balticola relative was estimated to be 4-63 million years ago, and these genera represent the most recently diverged pair of unicellular and colonial flagellates among the Volvocales.


Asunto(s)
Volvocida/clasificación , Volvocida/genética , ADN de Cloroplastos/genética , ADN Ribosómico/genética , Evolución Molecular , Variación Genética , Genotipo , Filogenia , Ribulosa-Bifosfato Carboxilasa/genética
15.
J Phycol ; 52(3): 486-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27273537

RESUMEN

The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed.


Asunto(s)
Glaucophyta/ultraestructura , Protoplastos/ultraestructura , Substitución por Congelación , Congelación , Glaucophyta/clasificación , Microscopía Electrónica de Transmisión , Tomografía
16.
J Phycol ; 52(2): 283-304, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27037593

RESUMEN

Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400-600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy-in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria-and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup "Pleiochloris," was included in the genus Ixipapillifera as I. deasonii comb. nov.


Asunto(s)
Chlamydomonas/clasificación , Filogenia , Secuencia de Bases , Teorema de Bayes , Chlamydomonas/citología , Chlamydomonas/genética , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Ribosómico 18S/genética
17.
Nature ; 458(7236): 357-61, 2009 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-19295610

RESUMEN

For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.


Asunto(s)
Factores Quimiotácticos/metabolismo , Defensinas/metabolismo , Magnoliopsida/citología , Magnoliopsida/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Secuencia de Aminoácidos , Factores Quimiotácticos/química , Factores Quimiotácticos/farmacología , Defensinas/química , Defensinas/farmacología , Etiquetas de Secuencia Expresada , Magnoliopsida/efectos de los fármacos , Magnoliopsida/genética , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Tubo Polínico/efectos de los fármacos , Tubo Polínico/genética , ARN de Planta/antagonistas & inhibidores , ARN de Planta/genética , ARN de Planta/metabolismo , Transcripción Genética
18.
Eukaryot Cell ; 13(5): 648-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632243

RESUMEN

Male and female, generally defined based on differences in gamete size and motility, likely have multiple independent origins, appearing to have evolved from isogamous organisms in various eukaryotic lineages. Recent studies of the gamete fusogen GCS1/HAP2 indicate that this protein is deeply conserved across eukaryotes, and its exclusive and/or functional expression generally resides in males or in male homologues. However, little is known regarding the conserved or primitive molecular traits of males and females within eukaryotes. Here, using morphologically indistinguishable isogametes of the colonial volvocine Gonium pectorale, we demonstrated that GCS1 is differently regulated between the sexes. G. pectorale GCS1 molecules in one sex (homologous to male) are transported from the gamete cytoplasm to the protruded fusion site, whereas those of the other sex (females) are quickly degraded within the cytoplasm upon gamete activation. This molecular trait difference might be conserved across various eukaryotic lineages and may represent male and female prototypes originating from a common eukaryotic ancestor.


Asunto(s)
Chlorophyta/genética , Regulación de la Expresión Génica , Fusión Génica , Células Germinativas de las Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/genética , Secuencia de Aminoácidos , Chlorophyta/citología , Chlorophyta/metabolismo , Eucariontes/química , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas/metabolismo , Alineación de Secuencia , Especificidad de la Especie
19.
BMC Evol Biol ; 14(1): 37, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24589311

RESUMEN

BACKGROUND: The evolution of oogamy from isogamy, an important biological event, can be summarized as follows: morphologically similar gametes (isogametes) differentiated into small "male" and large "female" motile gametes during anisogamy, from which immotile female gametes (eggs) evolved. The volvocine green algae represent a model lineage to study this type of sex evolution and show two types of gametic unions: conjugation between isogametes outside the parental colonies (external fertilization during isogamy) and fertilization between small motile gametes (sperm) and large gametes (eggs) inside the female colony (internal fertilization during anisogamy and oogamy). Although recent cultural studies on volvocine algae revealed morphological diversity and molecular genetic data of sexual reproduction, an intermediate type of union between these two gametic unions has not been identified. RESULTS: We identified a novel colonial volvocine genus, Colemanosphaera, which produces bundles of spindle-shaped male gametes through successive divisions of colonial cells. Obligately anisogamous conjugation between male and female motile gametes occurred outside the female colony (external fertilization during anisogamy). This new genus contains 16- or 32-celled spheroidal colonies similar to those of the volvocine genera Yamagishiella and Eudorina. However, Colemanosphaera can be clearly distinguished from these two genera based on its sister phylogenetic position to the enigmatic flattened colonial volvocine Platydorina and external fertilization during anisogamy. Two species of Colemanosphaera were found in a Japanese lake; these species are also distributed in European freshwaters based on a published sequence of an Austrian strain and the original description of Pandorina charkowiensis from Ukraine. CONCLUSIONS: Based on phylogeny and morphological data, this novel genus exhibits a missing link between Platydorina and the typical spheroidal colonial volvocine members such as Pandorina or Yamagishiella. Considering the external obligate anisogamy, oogamy evolution may have been preceded by the transition from external to internal fertilization during anisogamy within the volvocine green algae.


Asunto(s)
Evolución Biológica , Chlorophyta/genética , Células Germinativas/fisiología , Chlorophyta/clasificación , Chlorophyta/fisiología , Fertilización , Datos de Secuencia Molecular , Filogenia , Reproducción
20.
Mol Biol Evol ; 30(5): 1038-40, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23364323

RESUMEN

The molecular bases for the evolution of male-female sexual dimorphism are possible to study in volvocine algae because they encompass the entire range of reproductive morphologies from isogamy to oogamy. In 1978, Charlesworth suggested the model of a gamete size gene becoming linked to the sex-determining or mating type locus (MT) as a mechanism for the evolution of anisogamy. Here, we carried out the first comprehensive study of a candidate MT-linked oogamy gene, MAT3/RB, across the volvocine lineage. We found that evolution of anisogamy/oogamy predates the extremely high male-female divergence of MAT3 that characterizes the Volvox carteri lineage. These data demonstrate very little sex-linked sequence divergence of MAT3 between the two sexes in other volvocine groups, though linkage between MAT3 and the mating locus appears to be conserved. These data implicate genetic determinants other than or in addition to MAT3 in the evolution of anisogamy in volvocine algae.


Asunto(s)
Chlamydomonas/genética , Volvox/genética , Evolución Biológica , Chlamydomonas/clasificación , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Volvox/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA