Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; : e2402204, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778727

RESUMEN

Potassium-ion batteries (KIBs) can offer high energy density, cyclability, and operational safety while being economical due to the natural abundance of potassium. Utilizing graphite as an anode, suitable cathodes can realize full cells. Searching for potential cathodes, this work introduces P3-type K0.5Ni1/3Mn2/3O2 layered oxide as a potential candidate synthesized by a simple solid-state method. The material works as a 3.2 V cathode combining Ni redox at high voltage and Mn redox at low voltage and exhibits highly reversible K+ ion (de)insertion at ambient and elevated (40-50 °C) temperatures. First-principles calculations suggest the ground state in-plane Mn-Ni ordering in the MO2 sheets is strongly correlated to the K-content in the framework, leading to an interwoven and alternative row ordering of Ni-Mn in K0.5Ni1/3Mn2/3O2. Postmortem and electrochemical titration reveal the occurrence of a solid solution mechanism during K+ (de)insertion. The findings suggest that the Ni addition can effectively tune the electronic and structural properties of the cathode, leading to improved electrochemical performance. This work provides new insights in the quest to develop potential low-cost Co-free KIB cathodes for practical applications in stationary energy storage.

2.
Nat Mater ; 22(5): 562-569, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138006

RESUMEN

A bit more than a decade after the first report of ferroelectric switching in hafnium dioxide-based ultrathin layers, this family of materials continues to elicit interest. There is ample consensus that the observed switching does not obey the same mechanisms present in most other ferroelectrics, but its exact nature is still under debate. Next to this fundamental relevance, a large research effort is dedicated to optimizing the use of this extraordinary material, which already shows direct integrability in current semiconductor chips and potential for scalability to the smallest node architectures, in smaller and more reliable devices. Here we present a perspective on how, despite our incomplete understanding and remaining device endurance issues, the lessons learned from hafnium dioxide-based ferroelectrics offer interesting avenues beyond ferroelectric random-access memories and field-effect transistors. We hope that research along these other directions will stimulate discoveries that, in turn, will mitigate some of the current issues. Extending the scope of available systems will eventually enable the way to low-power electronics, self-powered devices and energy-efficient information processing.

3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769023

RESUMEN

mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.


Asunto(s)
COVID-19 , Nanopartículas , Vacunas , Humanos , COVID-19/prevención & control , Pandemias , Vacunas de ARNm , Células Presentadoras de Antígenos , Vacunas contra la COVID-19/genética , Vacunas Sintéticas
4.
AAPS PharmSciTech ; 22(1): 9, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33241538

RESUMEN

Death from an accidental or intentional overdose of sleeping tablets has increased exponentially in the USA. Furthermore, the simultaneous consumption of sleeping tablets with alcoholic beverages not only intensifies the effect of sleeping tablets but also leads to blackouts, sleepwalking, and death in many cases. In this article, we proposed a unique and innovative technology to prevent multi-tablet and alcohol-associated abuse of sleeping tablet. Agonist- and antagonist-loaded polymeric filaments of appropriate Eudragit® polymers were prepared using hot melt extrusion. Metoprolol tartrate and hydrochlorothiazide were used as model drugs in place of zolpidem tartrate (agonist-BCS class I) and flumazenil (antagonist-BCS class IV), respectively. Crushed filaments were converted into a tablet with a novel rapidly soluble co-processed alkalizing agent. Dissolution studies of single tablet and multiple tablets (5) in fasted state simulated gastric fluid (FaSSGF) confirmed that the release of the agonist was significantly (p < 0.0001) reduced in multi-tablet dissolution. Furthermore, the release of antagonist was significantly higher when tablet was exposed to FaSSGF+20% ethanol and various alcoholic beverages. Thus, appropriate use of Eudragit® polymer's chemistry could help design a tablet to prevent the release of agonist in case of overdose and simultaneous release of antagonist when consumed with alcohol.


Asunto(s)
Sobredosis de Droga , Etanol/administración & dosificación , Humanos , Polímeros/química , Ácidos Polimetacrílicos , Fármacos Inductores del Sueño/administración & dosificación , Solubilidad , Comprimidos
5.
Nat Mater ; 17(5): 427-431, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632408

RESUMEN

Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3-PbTiO3-LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors: a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.

6.
Nat Mater ; 17(12): 1095-1100, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30349031

RESUMEN

Hafnia-based thin films are a favoured candidate for the integration of robust ferroelectricity at the nanoscale into next-generation memory and logic devices. This is because their ferroelectric polarization becomes more robust as the size is reduced, exposing a type of ferroelectricity whose mechanism still remains to be understood. Thin films with increased crystal quality are therefore needed. We report the epitaxial growth of Hf0.5Zr0.5O2 thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 substrates. The films, which are under epitaxial compressive strain and predominantly (111)-oriented, display large ferroelectric polarization values up to 34 µC cm-2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This finding, in conjunction with density functional theory calculations, allows us to propose a compelling model for the formation of the ferroelectric phase. In addition, these results point towards thin films of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.

7.
AAPS PharmSciTech ; 20(2): 80, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30645704

RESUMEN

Opioid abuse is a growing problem and has become a national health crisis over the past decade in the USA. Oral ingestion, snorting, and injection are the most commonly employed routes of abuse for an immediate release product. To circumvent these issues, we have developed an egg-shaped tablet (egglet) using fused deposition modeling (FDM) 3D printing technology. Drug-loaded polymeric filaments (1.5 mm) were prepared using hot melt extrusion (HME) followed by printing into egglets of different sizes and infill densities. Based on printability and crush resistance, polyvinyl alcohol (PVA) was found to be the most suitable polymer for the preparation of abuse deterrent egglets. Further, egglets were evaluated and optimized for mechanical manipulation using household equipment, milling, particle size distribution, solvent extraction, and drug release as per the FDA guidance (November 2017). A multifactorial design was used to optimize egglets for solvent extraction and drug release. Extreme hardness (> 500 N) and very large particle size (> 1 mm) on mechanical manipulation confirmed the snorting deterring property while less than 15% drug extraction in 5 min (% Sext) demonstrated the deterrence for injection abuse. Quality target product profile D85 < 30 min and % Sext < 15 was achieved with egglets of 6 mm diameter, 45% infill density, and 15% w/w drug loading. Dose of drug can be easily customized by varying dimension and infill density without altering the composition. HME coupled with FDM 3D printing could be a promising tool in the preparation of patient-tailored, immediate release abuse deterrent formulation.


Asunto(s)
Trastornos Relacionados con Opioides/prevención & control , Impresión Tridimensional , Comprimidos , Tecnología Farmacéutica/métodos , Composición de Medicamentos , Liberación de Fármacos , Humanos , Tamaño de la Partícula , Alcohol Polivinílico/química
8.
Small ; 14(24): e1801038, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29770993

RESUMEN

Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Lix CoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.

9.
Nano Lett ; 17(1): 150-155, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27959556

RESUMEN

Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

10.
Phys Chem Chem Phys ; 19(26): 16960-16968, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28636685

RESUMEN

Memristive devices are promising circuit elements that enable novel computational approaches which go beyond the von-Neumann paradigms. Here by tuning the chemistry at the Al-LaNiO3 (LNO) interface, a metal-metal junction, we engineer good switching behavior with good electroresistance (ON-OFF resistance ratios of 100), and repeatable multiple resistance states. The active material responsible for such a behavior is a self-formed sandwich of an AlxOy layer at the interface obtained by grabbing oxygen by Al from LNO. Using aberration corrected electron microscopy and transport measurements, it is confirmed that the memristive hysteresis occurs due to the electric field driven O2- (or ) cycling between LNO (reservoir) and the interlayer, which drives the redox reactions forming and dissolving Al nanoclusters in the AlxOy matrix. This work provides clear insights into and details on precise oxygen control at such interfaces and can be useful for newer opportunities in oxitronics.

11.
Nano Lett ; 16(7): 4404-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27351823

RESUMEN

We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.

12.
Nano Lett ; 16(4): 2139-44, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26982325

RESUMEN

Oxygen vacancy formation, migration, and subsequent agglomeration into conductive filaments in transition metal oxides under applied electric field is widely believed to be responsible for electroforming in resistive memory devices, although direct evidence of such a pathway is lacking. Here, by utilizing strong metal-support interaction (SMSI) between Pt and TiO2, we observe via transmission electron microscopy the electroforming event in lateral Pt/TiO2/Pt devices where the atomic Pt from the electrode itself acts as a tracer for the propagating oxygen vacancy front. SMSI, which originates from the d-orbital overlap between Pt atom and the reduced cation of the insulating oxide in the vicinity of oxygen vacancies, was optimized by fabricating nanoscale devices causing Pt atom migration tracking the moving oxygen vacancy front from the anode to cathode during electroforming. Experiments performed in different oxidizing and reducing conditions, which tune SMSI in the Pt-TiO2 system, further confirmed the role of oxygen vacancies during electroforming. These observations also demonstrate that the noble metal electrode may not be as inert as previously assumed.

13.
Nano Lett ; 14(4): 2201-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24628625

RESUMEN

Structural defects and their dynamics play an important role in controlling the behavior of phase-change materials (PCM) used in low-power nonvolatile memory devices. However, not much is known about the influence of disorder on the electronic properties of crystalline PCM prior to a structural phase-change. Here, we show that the application of voltage pulses to single-crystalline GeTe nanowire memory devices introduces structural disorder in the form of dislocations and antiphase boundaries (APB). The dynamic evolution and pile-up of APBs increases disorder at a local region of the nanowire, which electronically transforms it from a metal to a dirty metal to an insulator, while still retaining single-crystalline long-range order. We also observe that close to this metal-insulator transition, precise control over the applied voltage is required to create an insulating state; otherwise the system ends up in a more disordered amorphous phase suggesting the role of electronic instabilities during the structural phase-change.

14.
Proc Natl Acad Sci U S A ; 108(25): 10050-5, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21628582

RESUMEN

Strong coupling of light with excitons in direct bandgap semiconductors leads to the formation of composite photonic-electronic quasi-particles (polaritons), in which energy oscillates coherently between the photonic and excitonic states with the vacuum Rabi frequency. The light-matter coherence is maintained until the oscillator dephases or the photon escapes. Exciton-polariton formation has enabled the observation of Bose-Einstein condensation in the solid-state, low-threshold polariton lasing and is also useful for terahertz and slow-light applications. However, maintaining coherence for higher carrier concentration and temperature applications still requires increased coupling strengths. Here, we report on size-tunable, exceptionally high exciton-polariton coupling strengths characterized by a vacuum Rabi splitting of up to 200 meV as well as a reduction in group velocity, in surface-passivated, self-assembled semiconductor nanowire cavities. These experiments represent systematic investigations on light-matter coupling in one-dimensional optical nanocavities, demonstrating the ability to engineer light-matter coupling strengths at the nanoscale, even in non-quantum-confined systems, to values much higher than in bulk.


Asunto(s)
Electrónica , Nanocables , Semiconductores , Compuestos de Cadmio/química , Luz , Luminiscencia , Ensayo de Materiales , Modelos Teóricos , Fotoquímica , Fotones , Puntos Cuánticos , Sulfuros/química , Propiedades de Superficie
15.
Nat Commun ; 15(1): 1428, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365898

RESUMEN

Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.

16.
Drug Discov Today ; 28(12): 103806, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890714

RESUMEN

Amorphous solid dispersions (ASD) have gained tremendous attention over the past two decades as one of the most promising techniques for enhancing the solubility of poorly water-soluble drugs. However, low drug loading is one of the major challenges of ASD technology that limits its commercialization to only a few drug candidates. Increasing the drug loading increases the risk of recrystallization during storage (solid state) and/or during dissolution (solution state). Various formulation and process-related strategies have been explored that open the possibility of formulating high drug-loaded ASDs without the risk of recrystallization. Here, we review various formulation approaches, such as the use of surfactants, mesoporous silicas, polymer combinations, in situ thermal crosslinking, structural modification of polymeric carriers, and surface nanocoating using minerals. We also discuss the mechanisms by which these approaches inhibit solid state and/or solution state recrystallization.


Asunto(s)
Polímeros , Tensoactivos , Solubilidad , Polímeros/química , Agua/química , Liberación de Fármacos , Composición de Medicamentos/métodos
17.
J Phys Condens Matter ; 35(49)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37586379

RESUMEN

Out-of-equilibrium investigation of strongly correlated materials deciphers the hidden equilibrium properties. Herein, we have investigated the out-of-equilibrium magnetic properties of polycrystalline Dy2Ti2O7and Ho2Ti2O7spin ices. Our experimental findings reveal the emergence of magnetic field-induced anomalous hysteresis observed solely in temperature-and magnetic field-dependent AC susceptibility measurements. The observed memory effect (anomalous thermomagnetic hysteresis) exhibits a strong dependence on both thermal and non-thermal driving variables. Owing to the non-collinear spin structure, the applied DC bias magnetic field produces quenched disorder sites in the cooperative Ising spin matrix and suppresses the spin-phonon coupling. These quench disorders create a dynamic spin correlation, having slow spin relaxation and quick decay time, which additionally contribute to AC susceptibility. The initial conditions and measurement protocol decide the magnitude and sign of this dynamical term contributing to AC susceptibility. It is being suggested that such out-of-equilibrium properties arise from the combined influences of geometric frustration, disorder, and the cooperative nature of spin dynamics exhibited by these materials.

18.
Nat Commun ; 14(1): 6445, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833273

RESUMEN

Droplet encapsulations using liquid or solid shells are of significant interest in microreactors, drug delivery, crystallization, and cell growth applications. Despite progress in droplet-related technologies, tuning micron-scale shell thickness over a large range of droplet sizes is still a major challenge. In this work, we report capillary force assisted cloaking using hydrophobic colloidal particles and liquid-infused surfaces. The technique produces uniform solid and liquid shell encapsulations over a broad range (5-200 µm shell thickness for droplet volume spanning over four orders of magnitude). Tunable liquid encapsulation is shown to reduce the evaporation rate of droplets by up to 200 times with a wide tunability in lifetime (1.5 h to 12 days). Further, we propose using the technique for single crystals and cell/spheroid culture platforms. Stimuli-responsive solid shells show hermetic encapsulation with tunable strength and dissolution time. Moreover, scalability, and versatility of the technique is demonstrated for on-chip applications.

19.
Mater Horiz ; 10(11): 5235-5245, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37740285

RESUMEN

Networks and systems which exhibit brain-like behavior can analyze information from intrinsically noisy and unstructured data with very low power consumption. Such characteristics arise due to the critical nature and complex interconnectivity of the brain and its neuronal network. We demonstrate a system comprising of multilayer hexagonal boron nitride (hBN) films contacted with silver (Ag), which can uniquely host two different self-assembled networks, which are self-organized at criticality (SOC). This system shows bipolar resistive switching between the high resistance state (HRS) and the low resistance state (LRS). In the HRS, Ag clusters (nodes) intercalate in the van der Waals gaps of hBN forming a network of tunnel junctions, whereas the LRS contains a network of Ag filaments. The temporal avalanche dynamics in both these states exhibit power-law scaling, long-range temporal correlation, and SOC. These networks can be tuned from one to another with voltage as a control parameter. For the first time, two different neural networks are realized in a single CMOS compatible, 2D material platform.

20.
ACS Nano ; 17(19): 19076-19086, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37772990

RESUMEN

The crucial role of nanocrystalline morphology in stabilizing the ferroelectric orthorhombic (o)-phase in doped-hafnia films is achieved via chemical solution deposition (CSD) by intentionally retaining carbonaceous impurities to inhibit grain growth. However, in the present study, large-grained (>100 nm) La-doped HfO2 (HLO) films are grown directly on silicon by adopting engineered water-diluted precursors with a minimum carbonaceous load and excellent shelf life. The o-phase stabilization is accomplished through a well-distributed La dopant, which generates uniformly populated oxygen vacancies, eliminating the need for oxygen-scavenging electrodes. These oxygen-deficient HLOs show a maximum remnant polarization of 37.6 µC/cm2 (2Pr) without wake-up and withstand large fields (>6.2 MV/cm). Furthermore, CSD-HLO in series with Al2O3 improves switching of MOSFETs (with an amorphous oxide channel) based on the negative capacitance effect. Thus, uniformly distributed oxygen vacancies serve as a standalone factor in stabilizing the o-phase, enabling efficient wake-up-free ferroelectricity without the need for nanostructuring, capping stresses, or oxygen-reactive electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA