RESUMEN
BACKGROUND: The appearance quality of the eggplant (Solanum melongena L.) fruit is an important trait that influences its commercial value. It is known that quality traits such as anthocyanin composition and fruit surface pattern are categorical and are inherited simply. However, research examples of gene mapping for the composition (anthocyanin accumulation profile) and the surface pattern in eggplant fruit are limited. METHODS AND RESULTS: To map loci for these traits including the accumulation profiles of two anthocyanins, a widely spreading anthocyanin, delphinidin 3-(p-coumaroyl) rutinoside-5-glucoside (nasunin), and the relatively rare delphinidin 3-glucoside (D3G), we used two F2 intracrossed populations (LWF2 and N28F2). For the LWF2 population, mapping was achieved by reconstructing the linkage map created by Fukuoka et al. [1]. In the case of the N28F2 population, we constructed a linkage map consisting of 13 linkage groups using 238 simple sequence repeats, 75 single-nucleotide polymorphisms. Using the two F2 populations, the nasunin accumulating profile, the striped pattern on the fruit surface, the colors of flowers, fruit, and calyxes, and the D3G accumulating profile were genetically mapped. Furthermore, by utilizing the eggplant reference genome information, mutations in the causative candidate genes for those loci were identified. CONCLUSION: Overall, the results of this study suggest that inactivation of key enzymes of anthocyanin metabolism and the gene orthologous to the tomato u gene are potential causes of observed variety in eggplant appearance traits.
Asunto(s)
Solanum melongena , Antocianinas/genética , Antocianinas/metabolismo , Mapeo Cromosómico/métodos , Frutas/genética , Frutas/metabolismo , Glucósidos/metabolismo , Solanum melongena/genética , Solanum melongena/metabolismoRESUMEN
As prickles cause labour inefficiency during cultivation and scratches on the skin of fruits during transportation, they are considered undesirable traits of eggplant (Solanum melongena L.). Because the molecular basis of prickle emergence has not been entirely revealed in plants, we mapped an eggplant semi-dominant Prickle (Pl) gene locus, which causes the absence of prickles, on chromosome 6 of a linkage map of the F2 population derived from crossing the no-prickly cultivar 'Togenashi-senryo-nigo' and the prickly line LS1934. By performing synteny mapping with tomato, the genomic region corresponding to the eggplant Pl locus was identified. Through bacterial artificial chromosome (BAC) screening, positive BAC clones and the contig sequence that harbour the Pl locus in the prickly eggplant genome were revealed. The BAC contig length was 133 kb, and it contained 16 predicted genes. Among them, a characteristic 0.5-kb insertion/deletion was detected. As the 0.5-kb insertion was commonly identified with the prickly phenotype worldwide, a primer pair that amplifies the insertion/deletion could be used for marker-assisted selection of the no-prickly phenotype. Such findings contribute to map-based-cloning of the Pl gene and the understanding of gene function, ultimately providing new insights into the regulatory molecular mechanisms underlying prickle emergence in plants.
RESUMEN
Ralstonia solanacearum causes bacterial wilt, a soil-borne disease and one of the most important maladies of potato and other Solanaceae crops. We analyzed the resistance of a potato clone to bacterial wilt by quantitative trait locus (QTL) analysis. A resistant diploid potato clone 10-03-30 was crossed with a susceptible diploid clone F1-1 to generate a diploid, two-way pseudo-testcross F1 population comprised of 94 genotypes. Dense linkage maps, containing 4,139 single nucleotide polymorphism markers with an average distance of 0.6 and 0.3 cM between markers, were constructed for both parents. The resistance level was evaluated by in vitro inoculation test with R. solanacearum (phylotype I/biovar 4/race 1). Five QTLs (qBWR-1 to -5) were identified on potato chromosomes 1, 3, 7, 10, and 11, and they explained 9.3-18.4% of the phenotypic variance. The resistant parent had resistant alleles in qBWR-2, qBWR-3, and qBWR-4 and susceptible alleles in qBWR-1 and qBWR-5. Accumulation of the resistant alleles in all five QTLs increased the level of resistance compared with that of the resistant parent. This is the first study to identify novel QTLs for bacterial wilt resistance in potato by using genome-wide markers.
RESUMEN
BACKGROUND: Parthenocarpy is a desired trait in tomato because it can overcome problems with fruit setting under unfavorable environmental conditions. A parthenocarpic tomato cultivar, 'MPK-1', with a parthenocarpic gene, Pat-k, exhibits stable parthenocarpy that produces few seeds. Because 'MPK-1' produces few seeds, seedlings are propagated inefficiently via cuttings. It was reported that Pat-k is located on chromosome 1. However, the gene had not been isolated and the relationship between the parthenocarpy and low seed set in 'MPK-1' remained unclear. In this study, we isolated Pat-k to clarify the relationship between parthenocarpy and low seed set in 'MPK-1'. RESULTS: Using quantitative trait locus (QTL) analysis for parthenocarpy and seed production, we detected a major QTL for each trait on nearly the same region of the Pat-k locus on chromosome 1. To isolate Pat-k, we performed fine mapping using an F4 population following the cross between a non-parthenocarpic cultivar, 'Micro-Tom' and 'MPK-1'. The results showed that Pat-k was located in the 529 kb interval between two markers, where 60 genes exist. By using data from a whole genome re-sequencing and genome sequence analysis of 'MPK-1', we could identify that the SlAGAMOUS-LIKE 6 (SlAGL6) gene of 'MPK-1' was mutated by a retrotransposon insertion. The transcript level of SlAGL6 was significantly lower in ovaries of 'MPK-1' than a non-parthenocarpic cultivar. From these results, we could conclude that Pat-k is SlAGL6, and its down-regulation in 'MPK-1' causes parthenocarpy and low seed set. In addition, we observed abnormal micropyles only in plants homozygous for the 'MPK-1' allele at the Pat-k/SlAGL6 locus. This result suggests that Pat-k/SlAGL6 is also related to ovule formation and that the low seed set in 'MPK-1' is likely caused by abnormal ovule formation through down-regulation of Pat-k/SlAGL6. CONCLUSIONS: Pat-k is identical to SlAGL6, and its down-regulation causes parthenocarpy and low seed set in 'MPK-1'. Moreover, down-regulation of Pat-k/SlAGL6 could cause abnormal ovule formation, leading to a reduction in the number of seeds.
Asunto(s)
Frutas/genética , Genes de Plantas/genética , Partenogénesis/genética , Solanum lycopersicum/genética , Mapeo Cromosómico , Flores/crecimiento & desarrollo , Flores/ultraestructura , Frutas/crecimiento & desarrollo , Genes de Plantas/fisiología , Genoma de Planta/genética , Escala de Lod , Solanum lycopersicum/crecimiento & desarrollo , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADNRESUMEN
KEY MESSAGE: An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2. Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
Asunto(s)
Begomovirus , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Inversión Cromosómica , Mapeo Cromosómico , Genotipo , Haplotipos , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virologíaRESUMEN
KEY MESSAGE: Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato. So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.
Asunto(s)
Mapeo Cromosómico/métodos , Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Teorema de Bayes , Cruzamientos Genéticos , Etiquetas de Secuencia Expresada , Ligamiento Genético , Marcadores Genéticos , Variación Genética , Genotipo , Modelos Genéticos , Fenotipo , FitomejoramientoRESUMEN
Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.
Asunto(s)
Rayos gamma , Genoma de Planta , Mutación/genética , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Encuestas y Cuestionarios , Secuencia de Bases , Variaciones en el Número de Copia de ADN/genética , Metanosulfonato de Etilo , Genes de Plantas , Mutación INDEL/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADNRESUMEN
KEY MESSAGE: This is the first report on genetic mapping of a resistance locus against Fusarium wilt caused by the plant pathogen Fusarium oxysporum f. sp. melongenae in cultivated eggplant. ABSTRACT: Fusarium wilt, caused by the plant pathogen Fusarium oxysporum f. sp. melongenae, is a major soil-borne disease threatening stable production in eggplant (Solanum melongena). Although three eggplant germplasms, LS1934, LS174, and LS2436, are known to be highly resistant to the pathogen, their resistance loci have not been mapped. In this study, we performed quantitative trait locus analyses in F2:3 populations and detected a resistance locus, FM1, at the end of chromosome 2, with two alleles, Fm1(L) and Fm1(E), in the F2 populations LWF2 [LS1934 × WCGR112-8 (susceptible)] and EWF2 [EPL-1 (derived from LS174) × WCGR112-8], respectively. The percentage of phenotypic variance explained by Fm1(L) derived from LS1934 was 75.0% [Logarithm of the odds (LOD) = 29.3], and that explained by Fm1(E) derived from EPL-1 was 92.2% (LOD = 65.8). Using backcrossed inbred lines, we mapped FM1 between two simple sequence repeat markers located ~4.881 cM apart from each other. Comparing the location of the above locus to those of previously reported ones, the resistance locus Rfo-sa1 from an eggplant ally (Solanum aethiopicum gr. Gilo) was mapped very close to FM1, whereas another resistance locus, from LS2436, was mapped to the middle of chromosome 4. This is the first report of mapping of a Fusarium resistance locus in cultivated eggplant. The availability of resistance-linked markers will enable the application of marker-assisted selection to overcome problems posed by self-incompatibility and introduction of negative traits because of linkage drag, and will lead to clear understanding of genetic mechanism of Fusarium resistance.
Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Solanum melongena/genética , Alelos , Cromosomas de las Plantas , ADN de Plantas/genética , Fusarium , Ligamiento Genético , Marcadores Genéticos , Repeticiones de Microsatélite , Fenotipo , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Solanum melongena/microbiologíaRESUMEN
Parthenocarpy, the ability to set fruits without pollination, is a useful trait for setting fruit under unfavorable conditions. To identify the loci controlling parthenocarpy in eggplant (Solanum melongena L.), we constructed linkage maps by using co-dominant simple sequence repeat and single nucleotide polymorphism markers in F(2) populations derived from intraspecific crosses between two non-parthenocarpic lines (LS1934 and Nakate-Shinkuro) and a parthenocarpic line (AE-P03). Total map distances were 1,414.6 cM (ALF2: LS1934 x AE-P03) and 1,153.8 cM (NAF2: Nakate-Shinkuro x AE-P03), respectively. Quantitative trait locus (QTL) analyses revealed two QTLs on chromosomes 3 and 8, which we denoted as Controlling parthenocarpy3.1 (Cop3.1) and Cop8.1, respectively. The percentage of phenotypic variance explained (PVE) of Cop3.1 was 6.3% in ALF2 (LOD = 4.2) and 10.6% in NAF2 (LOD = 3.0). The PVE of Cop8.1 was 45.7% in ALF2 (LOD = 23.8) and 29.7% in NAF2 (LOD = 7.9). Using a population of backcross inbred lines, we confirmed the effect of Cop8.1, but there was no evidence to support the contribution of Cop3.1. We need to verify the effect of Cop3.1 under various temperature conditions. In addition, we clarified the effectiveness of selective SSR markers, emf21H22 and emh11J10, mapped on each side of Cop8.1 in other F(2) populations derived from various parental combinations. This is the first report concerning QTL analysis of parthenocarpy in eggplant using molecular markers. It will be useful in marker-assisted selection and in revealing the genomic mechanism underlying parthenocarpy in eggplant.
Asunto(s)
Marcadores Genéticos/genética , Sitios de Carácter Cuantitativo , Solanum melongena/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas , Cruzamientos Genéticos , Variación Genética , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , TemperaturaRESUMEN
We constructed an integrated DNA marker linkage map of eggplant (Solanum melongena L.) using DNA marker segregation data sets obtained from two independent intraspecific F(2) populations. The linkage map consisted of 12 linkage groups and encompassed 1,285.5 cM in total. We mapped 952 DNA markers, including 313 genomic SSR markers developed by random sequencing of simple sequence repeat (SSR)-enriched genomic libraries, and 623 single-nucleotide polymorphisms (SNP) and insertion/deletion polymorphisms (InDels) found in eggplant-expressed sequence tags (ESTs) and related genomic sequences [introns and untranslated regions (UTRs)]. Because of their co-dominant inheritance and their highly polymorphic and multi-allelic nature, the SSR markers may be more versatile than the SNP and InDel markers for map-based genetic analysis of any traits of interest using segregating populations derived from any intraspecific crosses of practical breeding materials. However, we found that the distribution of microsatellites in the genome was biased to some extent, and therefore a considerable part of the eggplant genome was first detected when gene-derived SNP and InDel markers were mapped. Of the 623 SNP and InDel markers mapped onto the eggplant integrated map, 469 were derived from eggplant unigenes contained within Solanum orthologous (SOL) gene sets (i.e., sets of orthologous unigenes from eggplant, tomato, and potato). Out of the 469 markers, 326 could also be mapped onto the tomato map. These common markers will be informative landmarks for the transfer of tomato's more saturated genomic information to eggplant and will also provide comparative information on the genome organization of the two solanaceous species. The data are available from the DNA marker database of vegetables, VegMarks (http://vegmarks.nivot.affrc.go.jp).
Asunto(s)
Mapeo Cromosómico/métodos , Bases de Datos Genéticas , Genes de Plantas/genética , Homología de Secuencia de Ácido Nucleico , Solanum melongena/genética , ADN de Plantas/genética , Marcadores Genéticos , Mutación INDEL/genética , Solanum lycopersicum/genética , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie , Sintenía/genéticaRESUMEN
Genome evolution is a continuous process and genomic rearrangement occurs both within and between species. With the sequencing of the Arabidopsis thaliana genome, comparative genetics and genomics offer new insights into plant biology. The genus Brassica offers excellent opportunities with which to compare genomic synteny so as to reveal genome evolution. During a previous genetic analysis of clubroot resistance in Brassica rapa, we identified a genetic region that is highly collinear with Arabidopsis chromosome 4. This region corresponds to a disease resistance gene cluster in the A. thaliana genome. Relying on synteny with Arabidopsis, we fine-mapped the region and found that the location and order of the markers showed good correspondence with those in Arabidopsis. Microsynteny on a physical map indicated an almost parallel correspondence, with a few rearrangements such as inversions and insertions. The results show that this genomic region of Brassica is conserved extensively with that of Arabidopsis and has potential as a disease resistance gene cluster, although the genera diverged 20 million years ago.
RESUMEN
Onions are one of the most widely cultivated vegetables worldwide; however, the development and utilization of molecular markers have been limited because of the large genome of this plant. We present a genome-wide marker design workflow for onions and its application in a high-throughput genotyping method based on target amplicon sequencing. The efficiency of the method was evaluated by genotyping of F2 populations. In the marker design workflow, unigene and genomic sequence data sets were constructed, and polymorphisms between parental lines were detected through transcriptome sequence analysis. The positions of polymorphisms detected in the unigenes were mapped onto the genome sequence, and primer sets were designed. In total, 480 markers covering the whole genome were selected. By genotyping an F2 population, 329 polymorphic sites were obtained from the estimated positions or the flanking sequences. However, missing or sparse marker regions were observed in the resulting genetic linkage map. We modified the markers to cover these regions by genotyping the other F2 populations. The grouping and order of markers on the linkages were similar across the genetic maps. Our marker design workflow and target amplicon sequencing are useful for genome-wide genotyping of onions owing to their reliability, cost effectiveness, and flexibility.
Asunto(s)
Genoma de Planta , Cebollas , Mapeo Cromosómico/métodos , Ligamiento Genético , Genotipo , Técnicas de Genotipaje/métodos , Cebollas/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Análisis de Secuencia , Flujo de TrabajoRESUMEN
We genotyped strawberry cultivars by two newly selected and two previously reported SSR markers. All four markers produced interpretable electropherograms from 75 accessions consisting of 72 Fragaria × ananassa cultivars or lines and three octoploid Fragaria species accessions. These SSR markers were highly polymorphic; in particular, one of the newly developed markers, FxaHGA02P13, was capable of distinguishing all of the accessions except for a mutant strain that was derived from another accession in the set. When two markers were combined, all 48 full-sib individuals could be distinguished. Fingerprinting patterns were reproducible between multiple samples, including the leaves, sepals, and fruit flesh of the same accession. Principal-coordinate analysis of the 75 accessions detected several groups, which reflect taxon and breeding site. Together with other available markers, these SSR markers will contribute to the management of strawberry genetic resources and the protection of breeders' rights.
RESUMEN
Solanum torvum Sw. cv. Torubamubiga (TB) is a low cadmium (Cd)-accumulating plant. To elucidate the molecular mechanisms of the Cd acclimation process in TB roots, transcriptional regulation was analysed in response to mild Cd treatment: 0.1 muM CdCl(2) in hydroponic solution. A unigene set consisting of 6296 unigene sequences was constructed from 18 816 TB cDNAs. The distribution of functional categories was similar to tomato, while 330 unigenes were suggested to be TB specific. For expression profiling, the SuperSAGE method was adapted for use with Illumina sequencing technology. Expression tag libraries were constructed from Cd-treated (for 3 h, 1 d, and 3 d) and untreated roots, and 34 269 species of independent tags were collected. Moreover, 6237 tags were ascribed to the TB or eggplant (aubergine) unigene sequences. Time-course changes were examined, and 2049 up- and 2022 down-regulated tags were identified. Although no tags annotated to metal transporter genes were significantly regulated, a tag annotated to AtFRD3, a xylem-loading citrate transporter, was down-regulated. In addition to induction of heavy metal chaperone proteins, antioxidative and sulphur-assimilating enzymes were induced, confirming that oxidative stress developed even using a mild Cd concentration. Rapid repression of dehydration-related transcription factors and aquaporin isoforms suggests that dehydration stress is a potential constituent of Cd-induced biochemical impediments. These transcriptional changes were also confirmed by real-time reverse transcription-PCR. Further additions of TB unigene sequences and functional analysis of the regulated tags will reveal the molecular basis of the Cd acclimation process, including the low Cd-accumulating characteristics of TB.
Asunto(s)
Cadmio/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismoRESUMEN
Eggplant (Solanum melongena L.), also known as aubergine or brinjal, is an important vegetable in many countries. Few useful molecular markers have been reported for eggplant. We constructed simple sequence repeat (SSR)-enriched genomic libraries in order to develop SSR markers, and sequenced more than 14,000 clones. From these sequences, we designed 2,265 primer pairs to flank SSR motifs. We identified 1,054 SSR markers from amplification of 1,399 randomly selected primer pairs. The markers have an average polymorphic information content of 0.27 among eight lines of S. melongena. Of the 1,054 SSR markers, 214 segregated in an intraspecific mapping population. We constructed cDNA libraries from several eggplant tissues and obtained 6,144 expressed sequence tag (EST) sequences. From these sequences, we designed 209 primer pairs, 7 of which segregated in the mapping population. On the basis of the segregation data, we constructed a linkage map, and mapped the 236 segregating markers to 14 linkage groups. The linkage map spans a total length of 959.1 cM, with an average marker distance of 4.3 cM. The markers should be a useful resource for qualitative and quantitative trait mapping and for marker-assisted selection in eggplant breeding.
Asunto(s)
Marcadores Genéticos , Biblioteca Genómica , Repeticiones de Microsatélite , Repeticiones de Minisatélite , Solanum melongena/genética , Cromosomas de las Plantas , Cruzamientos Genéticos , Cartilla de ADN/genética , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genes de Plantas , Ligamiento Genético , Mapeo Físico de Cromosoma , Polimorfismo GenéticoRESUMEN
An SSR-based linkage map was constructed in Brassica rapa. It includes 113 SSR, 87 RFLP, and 62 RAPD markers. It consists of 10 linkage groups with a total distance of 1005.5 cM and an average distance of 3.7 cM. SSRs are distributed throughout the linkage groups at an average of 8.7 cM. Synteny between B. rapa and a model plant, Arabidopsis thaliana, was analyzed. A number of small genomic segments of A. thaliana were scattered throughout an entire B. rapa linkage map. This points out the complex genomic rearrangements during the course of evolution in Cruciferae. A 282.5-cM region in the B. rapa map was in synteny with A. thaliana. Of the three QTL (Crr1, Crr2, and Crr4) for clubroot resistance identified, synteny analysis revealed that two major QTL regions, Crr1 and Crr2, overlapped in a small region of Arabidopsis chromosome 4. This region belongs to one of the disease-resistance gene clusters (MRCs) in the A. thaliana genome. These results suggest that the resistance genes for clubroot originated from a member of the MRCs in a common ancestral genome and subsequently were distributed to the different regions they now inhabit in the process of evolution.
Asunto(s)
Arabidopsis/genética , Brassica rapa/genética , Evolución Molecular , Genómica , Enfermedades de las Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Mapeo Cromosómico , Marcadores Genéticos , Genoma de Planta/genética , Escala de Lod , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Sintenía/genéticaRESUMEN
Efficient plant breeding methods must be developed in order to increase yields and feed a growing world population, as well as to meet the demands of consumers with diverse preferences who require high-quality foods. We propose a strategy that integrates breeding simulations and phenotype prediction models using genomic information. The validity of this strategy was evaluated by the simultaneous genetic improvement of the yield and flavour of the tomato (Solanum lycopersicum), as an example. Reliable phenotype prediction models for the simulation were constructed from actual genotype and phenotype data. Our simulation predicted that selection for both yield and flavour would eventually result in morphological changes that would increase the total plant biomass and decrease the light extinction coefficient, an essential requirement for these improvements. This simulation-based genome-assisted approach to breeding will help to optimise plant breeding, not only in the tomato but also in other important agricultural crops.
Asunto(s)
Cruzamiento , Simulación por Computador , Genoma de Planta , Modelos Genéticos , Solanum lycopersicum/genética , Mapeo Cromosómico , Genética de Población , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Selección GenéticaRESUMEN
Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built a draft genome dataset with 33,873 scaffolds termed SME_r2.5.1 that covers 833.1 Mb, ca. 74% of the eggplant genome. Approximately 90% of the gene space was estimated to be covered by SME_r2.5.1 and 85,446 genes were predicted in the genome. Clustering analysis of the predicted genes of eggplant along with the genes of three other solanaceous plants as well as Arabidopsis thaliana revealed that, of the 35,000 clusters generated, 4,018 were exclusively composed of eggplant genes that would perhaps confer eggplant-specific traits. Between eggplant and tomato, 16,573 pairs of genes were deduced to be orthologous, and 9,489 eggplant scaffolds could be mapped onto the tomato genome. Furthermore, 56 conserved synteny blocks were identified between the two species. The detailed comparative analysis of the eggplant and tomato genomes will facilitate our understanding of the genomic architecture of solanaceous plants, which will contribute to cultivation and further utilization of these crops.
Asunto(s)
Genes de Plantas/fisiología , Solanum melongena/genética , Arabidopsis/genética , Solanum lycopersicum/genética , Especificidad de la EspecieRESUMEN
Clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae Woronin, is one of the most economically important diseases of Brassica crops in the world. Although many clubroot resistance (CR) loci have been identified through genetic analysis and QTL mapping, the molecular mechanisms of defense responses against P. brassicae remain unknown. Fine mapping of the Crr1 locus, which was originally identified as a single locus, revealed that it comprises two gene loci, Crr1a and Crr1b. Here we report the map-based cloning and characterization of Crr1a, which confers resistance to clubroot in Brassica rapa. Crr1a(G004), cloned from the resistant line G004, encodes a Toll-Interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) protein expressed in the stele and cortex of hypocotyl and roots, where secondary infection of the pathogen occurs, but not in root hairs, where primary infection occurs. Gain-of-function analysis proved that Crr1a(G004) alone conferred resistance to isolate Ano-01 in susceptible Arabidopsis and B. rapa. In comparison, the susceptible allele Crr1a(A9709) encodes a truncated NB-LRR protein, which lacked more than half of the TIR domain on account of the insertion of a solo-long terminal repeat (LTR) in exon 1 and included several substitutions and insertion-deletions in the LRR domain. This study provides a basis for further molecular analysis of defense mechanisms against P. brassicae and will contribute to the breeding of resistant cultivars of Brassica vegetables by marker-assisted selection.Data deposition The sequence reported in this paper has been deposited in the GenBank database (accession no. AB605024).