Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 22, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737727

RESUMEN

BACKGROUND: Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS: Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS: Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.


Asunto(s)
Anoftalmos , Coloboma , Anomalías del Ojo , Microftalmía , Humanos , Ratones , Animales , Anomalías del Ojo/genética , Anoftalmos/genética , Microftalmía/genética , Coloboma/genética , Ratones Noqueados , Desarrollo Embrionario/genética , Fenotipo , Ojo , Mamíferos
2.
Mamm Genome ; 34(2): 180-199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37294348

RESUMEN

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Asunto(s)
Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos
3.
PLoS Genet ; 16(1): e1008577, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31929527

RESUMEN

Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.


Asunto(s)
Ritmo Circadiano/genética , Sistema de Transporte de Aminoácidos y+/genética , Animales , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Receptores de Oxitocina/genética , Proteínas Represoras/genética , Serina Endopeptidasas/genética , Proteínas de Unión a Telómeros/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
4.
PLoS Genet ; 16(12): e1009190, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370286

RESUMEN

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD. This pool of BMD genes comprised 141 genes with previously unknown functions in bone biology and was complementary to pools derived from recent human studies. Nineteen of the 141 genes also caused skeletal abnormalities. Examination of the BMD genes in osteoclasts and osteoblasts underscored BMD pathways, including vesicle transport, in these cells and together with in silico bone turnover studies resulted in the prioritization of candidate genes for further investigation. Overall, the results add novel pathophysiological and molecular insight into bone health and disease.


Asunto(s)
Densidad Ósea/genética , Regulación de la Expresión Génica/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporosis/genética , Animales , Femenino , Ontología de Genes , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Genotipo , Masculino , Ratones , Ratones Transgénicos , Mutación , Osteoblastos/patología , Osteoclastos/patología , Osteoporosis/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Mapas de Interacción de Proteínas , Caracteres Sexuales , Transcriptoma
5.
Methods ; 191: 32-43, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33524495

RESUMEN

Knockout mice are used extensively to explore the phenotypic effects of mammalian gene dysfunction. With the application of RNA-guided Cas9 nuclease technology for the production of knockout mouse lines, the time, as well as the resources needed, to progress from identification of a gene of interest to production of a knockout line is significantly reduced. Here we present our standard methodology to produce knockout mouse lines by the electroporation of Cas9 ribonucleoprotein (RNP) into mouse zygotes. Using this protocol, we have obtained an 80% success rate in the generation of founders for null alleles with a subsequent 93% germline transmission rate. These methods rely on equipment already present in the majority of transgenic facilities and should be straightforward to implement where appropriate embryo handling expertise exists.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Electroporación , Endonucleasas/genética , Endonucleasas/metabolismo , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , ARN Guía de Kinetoplastida/genética , Cigoto/metabolismo
6.
Nature ; 537(7621): 508-514, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27626380

RESUMEN

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Genes Esenciales/genética , Genes Letales/genética , Mutación/genética , Fenotipo , Animales , Secuencia Conservada/genética , Enfermedad , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento , Humanos , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Penetrancia , Polimorfismo de Nucleótido Simple/genética , Homología de Secuencia
7.
J Neurosci ; 40(23): 4576-4585, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32341096

RESUMEN

An impediment to the development of effective therapies for neurodegenerative disease is that available animal models do not reproduce important clinical features such as adult-onset and stereotypical patterns of progression. Using in vivo magnetic resonance imaging and behavioral testing to study male and female decrepit mice, we found a stereotypical neuroanatomical pattern of progression of the lesion along the limbic system network and an associated memory impairment. Using structural variant analysis, we identified an intronic mutation in a mitochondrial-associated gene (Mrpl3) that is responsible for the decrepit phenotype. While the function of this gene is unknown, embryonic lethality in Mrpl3 knock-out mice suggests it is critical for early development. The observation that a mutation linked to energy metabolism precipitates a pattern of neurodegeneration via cell death across disparate but linked brain regions may explain how stereotyped patterns of neurodegeneration arise in humans or define a not yet identified human disease.SIGNIFICANCE STATEMENT The development of novel therapies for adult-onset neurodegenerative disease has been impeded by the limitations of available animal models in reproducing many of the clinical features. Here, we present a novel spontaneous mutation in a mitochondrial-associated gene in a mouse (termed decrepit) that results in adult-onset neurodegeneration with a stereotypical neuroanatomical pattern of progression and an associated memory impairment. The decrepit mouse model may represent a heretofore undiagnosed human disease and could serve as a new animal model to study neurodegenerative disease.


Asunto(s)
Variación Genética/genética , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/genética , Proteínas Mitocondriales/genética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética , Proteínas Ribosómicas/genética , Factores de Edad , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
J Proteome Res ; 20(1): 305-316, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151080

RESUMEN

We investigated the effect of homogenization strategy and protein precipitation on downstream protein quantitation using multiple reaction monitoring mass spectrometry (MRM-MS). Our objective was to develop a workflow capable of processing disparate tissue types with high throughput, minimal variability, and maximum purity. Similar abundances of endogenous proteins were measured in nine different mouse tissues regardless of the homogenization method used; however, protein precipitation had strong positive effects on several targets. The best throughput was achieved by lyophilizing tissues to dryness, followed by homogenization via bead-beating without sample buffer. Finally, the effect of tissue perfusion prior to dissection and collection was explored in 20 mouse tissues. MRM-MS showed decreased abundances of blood-related proteins in perfused tissues; however, complete removal was not achieved. Concentrations of nonblood proteins were largely unchanged, although significantly higher variances were observed for proteins from the perfused lung, indicating that perfusion may not be suitable for this organ. We present a simple yet effective tissue processing workflow consisting of harvest of fresh nonperfused tissue, novel lyophilization and homogenization by bead-beating, and protein precipitation. This workflow can be applied to a range of mouse tissues with the advantages of simplicity, minimal manual manipulation of samples, use of commonly available equipment, and high sample quality.


Asunto(s)
Proteínas Sanguíneas , Proteómica , Animales , Espectrometría de Masas , Ratones , Flujo de Trabajo
9.
J Biol Chem ; 294(18): 7202-7218, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30737279

RESUMEN

Whereas myosin 18B (Myo18B) is known to be a critical sarcomeric protein, the function of myosin 18A (Myo18A) is unclear, although it has been implicated in cell motility and Golgi shape. Here, we show that homozygous deletion (homozygous tm1a, tm1b, or tm1d alleles) of Myo18a in mouse is embryonic lethal. Reminiscent of Myo18b, Myo18a was highly expressed in the embryo heart, and cardiac-restricted Myo18a deletion in mice was embryonic lethal. Surprisingly, using Western blot analysis, we were unable to detect the known isoforms of Myo18A, Myo18Aα and Myo18Aß, in mouse heart using a custom C-terminal antibody. However, alternative anti-Myo18A antibodies detected a larger than expected protein, and RNA-Seq analysis indicated that a novel Myo18A transcript is expressed in mouse ventricular myocytes (and human heart). Cloning and sequencing revealed that this cardiac isoform, denoted Myo18Aγ, lacks the PDZ-containing N terminus of Myo18Aα but includes an alternative N-terminal extension and a long serine-rich C terminus. EGFP-tagged Myo18Aγ expressed in ventricular myocytes localized to the level of A-bands in sarcomeres, and Myo18a knockout embryos at day 10.5 exhibited disorganized sarcomeres with wavy thick filaments. We additionally generated myeloid-restricted Myo18a knockout mice to investigate the role of Myo18A in nonmuscle cells, exemplified by macrophages, which express more Myo18Aß than Myo18Aα, but no defects in cell shape, motility, or Golgi shape were detected. In summary, we have identified a previously unrecognized sarcomere component, a large novel isoform (denoted Myo18Aγ) of Myo18A. Thus, both members of class XVIII myosins are critical components of cardiac sarcomeres.


Asunto(s)
Miocardio/metabolismo , Miosinas/metabolismo , Sarcómeros/metabolismo , Animales , Eliminación de Gen , Genes Letales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Noqueados , Miosinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Conserv Genet ; 19(4): 995-1005, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30100824

RESUMEN

The International Mouse Phenotyping Consortium (IMPC) is building a catalogue of mammalian gene function by producing and phenotyping a knockout mouse line for every protein-coding gene. To date, the IMPC has generated and characterised 5186 mutant lines. One-third of the lines have been found to be non-viable and over 300 new mouse models of human disease have been identified thus far. While current bioinformatics efforts are focused on translating results to better understand human disease processes, IMPC data also aids understanding genetic function and processes in other species. Here we show, using gorilla genomic data, how genes essential to development in mice can be used to help assess the potentially deleterious impact of gene variants in other species. This type of analyses could be used to select optimal breeders in endangered species to maintain or increase fitness and avoid variants associated to impaired-health phenotypes or loss-of-function mutations in genes of critical importance. We also show, using selected examples from various mammal species, how IMPC data can aid in the identification of candidate genes for studying a condition of interest, deliver information about the mechanisms involved, or support predictions for the function of genes that may play a role in adaptation. With genotyping costs decreasing and the continued improvements of bioinformatics tools, the analyses we demonstrate can be routinely applied.

12.
Commun Biol ; 7(1): 6, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168632

RESUMEN

Mouse is the mammalian model of choice to study human health and disease due to its size, ease of breeding and the natural occurrence of conditions mimicking human pathology. Here we design and validate multiple reaction monitoring mass spectrometry (MRM-MS) assays for quantitation of 2118 unique proteins in 20 murine tissues and organs. We provide open access to technical aspects of these assays to enable their implementation in other laboratories, and demonstrate their suitability for proteomic profiling in mice by measuring normal protein abundances in tissues from three mouse strains: C57BL/6NCrl, NOD/SCID, and BALB/cAnNCrl. Sex- and strain-specific differences in protein abundances are identified and described, and the measured values are freely accessible via our MouseQuaPro database: http://mousequapro.proteincentre.com . Together, this large library of quantitative MRM-MS assays established in mice and the measured baseline protein abundances represent an important resource for research involving mouse models.


Asunto(s)
Proteínas , Proteómica , Humanos , Animales , Ratones , Proteómica/métodos , Ratones Endogámicos NOD , Ratones SCID , Ratones Endogámicos C57BL , Proteínas/análisis , Mamíferos
13.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956430

RESUMEN

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Asunto(s)
Animales de Laboratorio , Guías como Asunto , Animales , Animales de Laboratorio/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Experimentación Animal/normas , Investigación Biomédica/normas
14.
Methods Mol Biol ; 2631: 53-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995664

RESUMEN

Genetically engineered mice are used as avatars to understand mammalian gene function and develop therapies for human disease. During genetic modification, unintended changes can occur, and these changes may result in misassigned gene-phenotype relationships leading to incorrect or incomplete experimental interpretations. The types of unintended changes that may occur depend on the allele type being made and the genetic engineering approach used. Here we broadly categorize allele types as deletions, insertions, base changes, and transgenes derived from engineered embryonic stem (ES) cells or edited mouse embryos. However, the methods we describe can be adapted to other allele types and engineering strategies. We describe the sources and consequ ences of common unintended changes and best practices for detecting both intended and unintended changes by screening and genetic and molecular quality control (QC) of chimeras, founders, and their progeny. Employing these practices, along with careful allele design and good colony management, will increase the chance that investigations using genetically engineered mice will produce high-quality reproducible results, to enable a robust understanding of gene function, human disease etiology, and therapeutic development.


Asunto(s)
Edición Génica , Ingeniería Genética , Ratones , Animales , Humanos , Edición Génica/métodos , Células Madre Embrionarias , Transgenes , Control de Calidad , Sistemas CRISPR-Cas , Mamíferos/genética
15.
Metabolites ; 13(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623890

RESUMEN

Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines and complex lipids were analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites were significantly different between the sexes in WT mice. Many of these metabolites were also found to have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. The association of plasma metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor in the biological interpretation of gene functions.

16.
Genes (Basel) ; 14(8)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37628590

RESUMEN

The vacuolar H+-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely ATP6V0C, ATP6V1A, ATP6V0A1, and ATP6V1B2, have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant ATP6V1B2 p.Arg506* variant can cause both congenital deafness with onychodystrophy, autosomal dominant (DDOD) and deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures syndromes (DOORS). Some but not all individuals with this truncating variant have intellectual disability and/or epilepsy, suggesting incomplete penetrance and/or variable expressivity. To further explore the impact of the p.Arg506* variant in neurodevelopment and epilepsy, we generated Atp6v1b2emR506* mutant mice and performed standardized phenotyping using the International Mouse Phenotyping Consortium (IMPC) pipeline. In addition, we assessed the EEG profile and seizure susceptibility of Atp6v1b2emR506* mice. Behavioral tests revealed that the mice present locomotor hyperactivity and show less anxiety-associated behaviors. Moreover, EEG analyses indicate that Atp6v1b2emR506* mutant mice have interictal epileptic activity and that both heterozygous (like patients) and homozygous mice have reduced seizure thresholds to pentylenetetrazol. Our results confirm that variants in ATP6V1B2 can cause seizures and that the Atp6v1b2emR506* heterozygous mouse model is a valuable tool to further explore the pathophysiology and potential treatments for vacuolar ATPases-associated epilepsy and disorders.


Asunto(s)
Artrogriposis , Discapacidad Intelectual , ATPasas de Translocación de Protón Vacuolares , Animales , Ratones , Convulsiones/genética , Causalidad , Adenosina Trifosfatasas , Ansiedad , ATPasas de Translocación de Protón Vacuolares/genética
17.
Commun Biol ; 6(1): 626, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301944

RESUMEN

Genome editing with CRISPR-associated (Cas) proteins holds exceptional promise for "correcting" variants causing genetic disease. To realize this promise, off-target genomic changes cannot occur during the editing process. Here, we use whole genome sequencing to compare the genomes of 50 Cas9-edited founder mice to 28 untreated control mice to assess the occurrence of S. pyogenes Cas9-induced off-target mutagenesis. Computational analysis of whole-genome sequencing data detects 26 unique sequence variants at 23 predicted off-target sites for 18/163 guides used. While computationally detected variants are identified in 30% (15/50) of Cas9 gene-edited founder animals, only 38% (10/26) of the variants in 8/15 founders validate by Sanger sequencing. In vitro assays for Cas9 off-target activity identify only two unpredicted off-target sites present in genome sequencing data. In total, only 4.9% (8/163) of guides tested have detectable off-target activity, a rate of 0.2 Cas9 off-target mutations per founder analyzed. In comparison, we observe ~1,100 unique variants in each mouse regardless of genome exposure to Cas9 indicating off-target variants comprise a small fraction of genetic heterogeneity in Cas9-edited mice. These findings will inform future design and use of Cas9-edited animal models as well as provide context for evaluating off-target potential in genetically diverse patient populations.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ratones , Animales , Genoma , Mutación , Mutagénesis
18.
Mamm Genome ; 23(9-10): 580-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22968824

RESUMEN

In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research.


Asunto(s)
Ratones Noqueados/genética , Animales , Internacionalidad , Internet , Ratones
19.
Autism Res ; 15(7): 1189-1208, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35445787

RESUMEN

Autism spectrum disorder (ASD) and congenital heart disease (CHD) are linked on a functional and genetic level. Most work has investigated CHD-related neurodevelopmental abnormalities. Cardiac abnormalities in ASD have been less studied. We investigated the prevalence of cardiac comorbidities relative to ASD genetic contributors. Using high frequency ultrasound imaging, we screened 9 ASD-related genetic mouse models (Arid1b(+/-) , Chd8(+/-) , 16p11.2 (deletion), Sgsh(+/-) , Sgsh(-/-) , Shank3 Δexon 4-9(+/-) , Shank3 Δexon 4-9(-/-) , Fmr1(-/-) , Vps13b(+/-) ), and pooled wild-type littermates (WTs). We measured heart rate (HR), aorta diameter (AoD), thickness and thickening of the left-ventricular (LV) anterior and posterior walls, LV chamber diameter, fractional shortening, stroke volume and cardiac output, mitral inflow Peak E and A velocity ratio, ascending aorta velocity time integral (VTI). Mutant groups presented small-scale alterations in cardiac structure and function compared to WTs (LV anterior wall thickness and thickening, chamber diameter and fractional shortening, HR). A greater number of significant differences was observed among mutant groups than between mutant groups and WTs. Mutant groups differed primarily in structural measures (LV chamber diameter and anterior wall thickness, HR, AoD). The mutant groups with most differences to WTs were 16p11.2 (deletion), Fmr1(-/-) , Arid1b(+/-) . The mutant groups with most differences from other mutant groups were 16p11.2 (deletion), Sgsh(+/-) , Fmr1(-/-) . Our results recapitulate the associated clinical findings. The characteristic ASD heterogeneity was recapitulated in the cardiac phenotype. The type of abnormal measures (morphological, functional) can highlight common underlying mechanisms. Clinically, knowledge of cardiac abnormalities in ASD can be essential as even non-lethal abnormalities impact normal development. LAY SUMMARY: Autism spectrum disorder (ASD) and congenital heart disease (CHD) are linked functionally and genetically. ASD cardiac phenotyping is limited. We assessed the cardiac phenotype of 9 ASD-related mouse models. We found subtle heterogenous cardiac abnormalities compared to controls, with more differences within ASD than between ASD and controls, mirroring clinical findings. Clinically, knowing the cardiac abnormalities in ASD is vital as even non-lethal cardiac abnormalities can impact development.


Asunto(s)
Trastorno del Espectro Autista , Cardiopatías Congénitas , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/genética , Ratones , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Fenotipo , Factores de Transcripción/genética
20.
Genome Med ; 14(1): 119, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229886

RESUMEN

BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.


Asunto(s)
Embrión de Mamíferos , Genes Letales , Animales , Femenino , Homocigoto , Humanos , Ratones , Ratones Noqueados , Fenotipo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA