Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Drug Chem Toxicol ; 46(4): 736-745, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35734876

RESUMEN

Neonatal alcohol exposure (NAE) can induce oxidative stress. We determined whether zingerone (ZO), a phytochemical with anti-oxidant activity, can mitigate the negative impact of neonatal alcohol-induced oxidative stress. Seventy ten-day-old Sprague-Dawley rat pups (35 male, 35 female) were randomly assigned and administered the following treatment regimens daily from postnatal day (PND) 12-21: group 1 - nutritive milk (NM), group 2 - NM +1 g/kg ethanol (Eth), group 3 - NM + 40 mg/kg ZO, group 4 - NM + Eth + ZO. Growth performance, blood glucose and plasma triglycerides (TGs), total cholesterol, HDL-cholesterol, leptin and insulin concentration were determined. Cytochrome p450E21(CYP2E1) and thiobarbituric acid (TBARS); markers of hepatic oxidative stress and catalase, superoxide dismutase (SOD) and total glutathione (GSH), anti-oxidant markers of the pups were determined. Oral administration of ethanol (NM + Eth), zingerone (NM + ZO) and combined ethanol and zingerone (NM + Eth + ZO) did not affect the growth performance and insulin and leptin concentration of the rats (p > 0.05). Ethanol significantly reduced plasma TGs concentration of female rats (p = 0.04 vs control). However, ethanol and/or its combination with zingerone decreased hepatic GSH (p = 0.02 vs control) and increased CYP2E1 (p = 0.0002 vs control) activity in male rat pups. Zingerone had no effect (p > 0.05 vs control) on the rats' CYP2E1, GSH, SOD and catalase activities. Neonatal alcohol administration elicited hepatic oxidative stress in male rat pups only, showing sexual dimorphism. Zingerone (NM + ZO) prevented an increase in CYP2E1 activity and a decrease in GSH concentration but did not prevent the alcohol-induced hepatic oxidative stress in the male rat pups.


Asunto(s)
Antioxidantes , Insulinas , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Antioxidantes/farmacología , Catalasa/metabolismo , Leptina/farmacología , Citocromo P-450 CYP2E1 , Estrés Oxidativo , Etanol/toxicidad , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Insulinas/farmacología
2.
Molecules ; 24(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781794

RESUMEN

Nutritional manipulations in the neonatal period are associated with the development of negative or positive health outcomes later in life. Excessive fructose consumption has been attributed to the increase in the global prevalence of metabolic syndrome (MetS) and the development of oxidative stress. Oleanolic acid (OA) has anti-diabetic and anti-obesity effects. We investigated the protective potential of orally administering OA in the neonatal period, to prevent fructose-induced oxidative stress, adverse health outcomes and maturation of the gastrointestinal tract (GIT) in suckling rats. Seven-day old Sprague-Dawley rats (N = 30) were gavaged daily with 10 mL/kg of: distilled water (DW), oleanolic acid (OA; 60 mg/kg), high fructose solution (HF; 20% w/v), or OAHF for 7 days. On day 14, tissue samples were collected to determine clinical health profiles, hepatic lipid content, and activity of anti-oxidant enzymes. Furthermore, biomarkers of oxidative stress and anti-oxidant capacity in the skeletal muscles were assessed. The gastrointestinal tract (GIT) morphometry was measured. Rats in all groups grew over the 7-day treatment period. There were no significant differences in the terminal body masses, GIT morphometry, surrogate markers of general health, liver lipid content across all treatment groups (p < 0.05). Neonatal fructose administration decreased the activity of catalase, depleted GSH and increased lipid peroxidation. However, the level of GSH and catalase activity were improved by neonatal OA treatment. Short-term oral OA administration during the critical developmental period protects against fructose-induced oxidative stress without adverse effects on health outcomes associated with MetS or precocious development of the GIT in suckling male and female rats.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Obesidad/dietoterapia , Ácido Oleanólico/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Administración Oral , Animales , Animales Recién Nacidos , Animales Lactantes , Fructosa/efectos adversos , Fructosa/toxicidad , Humanos , Músculo Esquelético/patología , Obesidad/patología , Ratas
3.
J Nutr Metab ; 2024: 6252426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883868

RESUMEN

Lycopene is a naturally occurring carotenoid predominantly found in tomatoes and tomato-based products. Like other phytochemicals, it exhibits health beneficial biological activities that can be exploited when it is used as a dietary supplement. In vitro and in vivo, lycopene has been demonstrated to mitigate oxidative stress-induced metabolic dysfunctions and diseases including inflammation, obesity, and diabetes mellitus. Lycopene has been shown to alleviate metabolic diseases that affect the bone, eye, kidney, liver, lungs, heart, and nervous system. This review presents the state of the art regarding lycopene's health benefits and its potential applications in health system delivery. Furthermore, lycopene's protective effects against toxins, safety in its use, and possible toxicity are explored.

4.
Metabolites ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36837786

RESUMEN

Alcohol intake at different developmental stages can lead to the development of alcohol-induced fatty liver disease (AFLD). Zingerone (ZO) possess hepato-protective properties; thus, when administered neonatally, it could render protection against AFLD. This study aimed to evaluate the potential long-term protective effect of ZO against the development of AFLD. One hundred and twenty-three 10-day-old Sprague-Dawley rat pups (60 males; 63 females) were randomly assigned to four groups and orally administered the following treatment regimens daily during the pre-weaning period from postnatal day (PND) 12-21: group 1-nutritive milk (NM), group 2-NM +1 g/kg ethanol (Eth), group 3-NM + 40 mg/kg ZO, group 4-NM + Eth +ZO. From PND 46-100, each group from the neonatal stage was divided into two; subgroup I had tap water and subgroup II had ethanol solution as drinking fluid, respectively, for eight weeks. Mean daily ethanol intake, which ranged from 10 to 14.5 g/kg body mass/day, resulted in significant CYP2E1 elevation (p < 0.05). Both late single hit and double hit with alcohol increased liver fat content, caused hepatic macrosteatosis, dysregulated mRNA expression of SREBP1c and PPAR-α in male and female rats (p < 0.05). However, neonatal orally administered ZO protected against liver lipid accretion and SREBP1c upregulation in male rats only and attenuated the alcohol-induced hepatic PPAR-α downregulation and macrosteatosis in both sexes. This data suggests that neonatal orally administered zingerone can be a potential prophylactic agent against the development of AFLD.

5.
Birth Defects Res ; 113(6): 451-468, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577143

RESUMEN

Alcohol consumption remains prevalent among pregnant and nursing mothers despite the well-documented adverse effects this may have on the offspring. Moderate-to-high levels of alcohol consumption in pregnancy result in fetal alcohol syndrome (FAS) disorders, with brain defects being chief among the abnormalities. Recent findings indicate that while light-to-moderate levels may not cause FAS, it may contribute to epigenetic changes that make the offspring prone to adverse health outcomes including metabolic disorders and an increased propensity in the adolescent-onset of drinking alcohol. On the one hand, prenatal alcohol exposure (PAE) causes epigenetic changes that affect lipid and glucose transcript regulating genes resulting in metabolic abnormalities. On the other hand, it can program offspring for increased alcohol intake, enhance its palatability, and increase acceptance of alcohol's flavor through associative learning, making alcohol a plausible second hit for the development of alcohol-induced liver disease. Adolescent drinking results in alcohol dependence and abuse in adulthood. Adolescent drinking results in alcohol dependence and abuse in adulthood. Alterations on the opioid system, particularly, the mu-opioid system, has been implicated in the mechanism that induces increased alcohol consumption and acceptance. This review proposes a mechanism that links PAE to the development of alcoholism and eventually to alcoholic liver disease (ALD), which results from prolonged alcohol consumption. While PAE may not lead to ALD development in childhood, there are chances that it may lead to ALD in adulthood.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Hepatopatías Alcohólicas , Efectos Tardíos de la Exposición Prenatal , Consumo de Bebidas Alcohólicas/efectos adversos , Etanol/efectos adversos , Femenino , Trastornos del Espectro Alcohólico Fetal/etiología , Humanos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
6.
Plants (Basel) ; 8(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731759

RESUMEN

This paper reviews the properties of the most cultivated species of the Moringaceae family, Moringa oleifera Lam. The paper takes a critical look at the positive and the associated negative properties of the plant, with particular emphasis on its chemistry, selected medicinal and nutritional properties, as well as some ecological implications of the plant. The review highlights the importance of glucosinolates (GS) compounds which are relatively unique to the Moringa species family, with glucomoriginin and its acylated derivative being the most abundant. We highlight some new research findings revealing that not all M. oleifera cultivars contain an important flavonoid, rutin. The review also focuses on phenolic acids, tannin, minerals and vitamins, which are in high amounts when compared to most vegetables and fruits. Although there are numerous benefits of using M. oleifera for medicinal purposes, there are reports of contraindications. Nonetheless, we note that there are no major harmful effects of M. oleifera that have been reported by the scientific community. M. oleifera is suspected to be potentially invasive and moderately invasive in some regions of the world because of its ability to grow in a wide range of environmental conditions. However, the plant is currently classified as a low potential invasive species and thus there is a need to constantly monitor the species. Despite the numerous benefits associated with the plant, there is still a paucity of data on clinical trials proving both the positive and negative effects of the plant. We recommend further clinical trials to ascertain the properties associated with the plant, especially regarding long term use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA