Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 23(5): 919-930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589652

RESUMEN

Exposure to ultraviolet radiation (UVR) leads to skin DNA damage, specifically in the form of cyclobutane pyrimidine dimers, with thymidine dimers being the most common. Quantifying these dimers can indicate the extent of DNA damage resulting from UVR exposure. Here, a new liquid chromatography-mass spectrometry (LC-MS) method was used to quantify thymidine dimers in the urine after a temporary increase in real-life UVR exposure. Healthy Danish volunteers (n = 27) experienced increased UVR exposure during a winter vacation. Individual exposure, assessed via personally worn electronic UVR dosimeters, revealed a mean exposure level of 32.9 standard erythema doses (SEDs) during the last week of vacation. Morning urine thymidine dimer concentrations were markedly elevated both 1 and 2 days post-vacation, and individual thymidine dimer levels correlated with UVR exposure during the last week of the vacation. The strongest correlation with erythema-weighted personal UVR exposure (Power model, r2 = 0.64, p < 0.001) was observed when both morning urine samples were combined to measure 48-h thymidine dimer excretion, whereas 24-h excretion based on a single sample provided a weaker correlation (Power model, r2 = 0.55, p < 0.001). Sex, age, and skin phototype had no significant effect on these correlations. For the first time, urinary thymidine dimer excretion was quantified by LC-MS to evaluate the effect of a temporary increase in personal UVR exposure in a real-life setting. The high sensitivity to elevated UVR exposure and correlation between urinary excretion and measured SED suggest that this approach may be used to quantify DNA damage and repair and to evaluate photoprevention strategies.


Asunto(s)
Dímeros de Pirimidina , Rayos Ultravioleta , Humanos , Dímeros de Pirimidina/análisis , Masculino , Adulto , Femenino , Daño del ADN , Persona de Mediana Edad , Espectrometría de Masas , Cromatografía Liquida , Adulto Joven , Exposición a la Radiación/análisis , Voluntarios Sanos
2.
Scand J Med Sci Sports ; 34(1): e14362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37002854

RESUMEN

INTRODUCTION: Male elite cyclists (average VO2 -max: 71 mL/min/kg, n = 18) completed 7 weeks of high-intensity interval training (HIT) (3×/week; 4-min and 30-s intervals) during the competitive part of the season. The influence of a maintained or lowered total training volume combined with HIT was evaluated in a two-group design. Weekly moderate-intensity training was lowered by ~33% (~5 h) (LOW, n = 8) or maintained at normal volume (NOR, n = 10). Endurance performance and fatigue resistance were evaluated via 400 kcal time-trials (~20 min) commenced either with or without prior completion of a 120-min preload (including repeated 20-s sprints to simulate physiologic demands during road races). RESULTS: Time-trial performance without preload was improved after the intervention (p = 0.006) with a 3% increase in LOW (p = 0.04) and a 2% increase in NOR (p = 0.07). Preloaded time-trial was not significantly improved (p = 0.19). In the preload, average power during repeated sprinting increased by 6% in LOW (p < 0.01) and fatigue resistance in sprinting (start vs end of preload) was improved (p < 0.05) in both groups. Blood lactate during the preload was lowered (p < 0.001) solely in NOR. Measures of oxidative enzyme activity remained unchanged, whereas the glycolytic enzyme PFK increased by 22% for LOW (p = 0.02). CONCLUSION: The present study demonstrates that elite cyclists can benefit from intensified training during the competitive season both with maintained and lowered training volume at moderate intensity. In addition to benchmarking the effects of such training in ecological elite settings, the results also indicate how some performance and physiological parameters may interact with training volume.


Asunto(s)
Ciclismo , Resistencia Física , Humanos , Masculino , Resistencia Física/fisiología , Ciclismo/fisiología , Consumo de Oxígeno/fisiología
3.
Scand J Med Sci Sports ; 34(1): e14520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839051

RESUMEN

INTRODUCTION: This study examined the impact of different upper-torso sportswear technologies on the performance and physiological heat strain of well-trained and national-level athletes during prolonged running in moderately hot conditions. METHODS: A randomized crossover design was employed in which 20 well-trained (n = 16) and national-level (n = 4) athletes completed four experimental trials in moderately hot conditions (35°C, 30% relative humidity). In each trial, participants ran at 70% of their peak oxygen uptake (70% V̇O2peak ) for 60 min, while wearing a different upper-body garment: cotton t-shirt, t-shirt with sweat-wicking fabric, compression t-shirt, and t-shirt with aluminum dots lining the inside of the upper back of the garment. Running speed was adjusted to elicit the predetermined oxygen consumption associated with 70% V̇O2peak . Physiological (core and skin temperatures, total body water loss, and urine specific gravity) and perceptual (thermal comfort and sensation, ratings of perceived exertion, and garment cooling functionality) parameters along with running speed at 70% V̇O2peak were continuously recorded. RESULTS: No significant differences were observed between the four garments for running speed at 70% V̇O2peak , physiological heat strain, and perceptual responses (all p > 0.05). The tested athletes reported larger areas of perceived suboptimal cooling functionality in the cotton t-shirt and the t-shirt with aluminum dots relative to the sweat-wicking and compression t-shirts (d: 0.43-0.52). CONCLUSION: There were not differences among the tested garments regarding running speed at 70% V̇O2peak , physiological heat strain, and perceptual responses in well-trained and national-level endurance athletes exercising in moderate heat.


Asunto(s)
Regulación de la Temperatura Corporal , Carrera , Humanos , Aluminio , Temperatura Corporal , Regulación de la Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Calor , Carrera/fisiología , Temperatura Cutánea , Sudoración , Estudios Cruzados
4.
Scand J Med Sci Sports ; 33(7): 1054-1071, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36932633

RESUMEN

Performance in short-duration sports is highly dependent on muscle glycogen, but the total degradation is only moderate and considering the water-binding property of glycogen, unnecessary storing of glycogen may cause an unfavorable increase in body mass. To investigate this, we determined the effect of manipulating dietary carbohydrates (CHO) on muscle glycogen content, body mass, and short-term exercise performance. In a randomized and counterbalanced cross-over design, twenty-two men completed two maximal cycle tests of either 1-min (n = 10) or 15-min (n = 12) duration with different pre-exercise muscle glycogen levels. Glycogen manipulation was initiated three days prior to the tests by exercise-induced glycogen depletion followed by ingestion of a moderate (M-CHO) or high (H-CHO) CHO-diet. Subjects were weighed before each test, and muscle glycogen content was determined in biopsies from m. vastus lateralis before and after each test. Pre-exercise muscle glycogen content was lower following M-CHO than H-CHO (367 mmol · kg-1 DW vs. 525 mmol · kg-1 DW, p < 0.00001), accompanied by a 0.7 kg lower body mass (p < 0.00001). No differences were observed in performance between diets in neither the 1-min (p = 0.33) nor the 15-min (p = 0.99) test. In conclusion, pre-exercise muscle glycogen content and body mass were lower after ingesting moderate compared with high amounts of CHO, while short-term exercise performance was unaffected. This demonstrates that adjusting pre-exercise glycogen levels to the requirements of competition may provide an attractive weight management strategy in weight-bearing sports, particularly in athletes with high resting glycogen levels.


Asunto(s)
Glucógeno , Músculo Esquelético , Humanos , Masculino , Dieta , Carbohidratos de la Dieta , Ejercicio Físico/fisiología , Glucógeno/metabolismo , Músculo Esquelético/fisiología , Estudios Cruzados
5.
Scand J Med Sci Sports ; 33(12): 2457-2469, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37668421

RESUMEN

Despite the frequent occurrence of congested game fixtures in elite ice hockey, the postgame recovery pattern has not previously been investigated. The purpose of the present study was therefore to evaluate the acute decrements and subsequent recovery of skeletal muscle glycogen levels, muscle function and repeated-sprint ability following ice hockey game-play. Sixteen male players from the Danish U20 national team completed a training game with muscle biopsies obtained before, postgame and following ~38 h of recovery (day 2). On-ice repeated-sprint ability and muscle function (maximal voluntary isometric [MVIC] and electrically induced low- (20 Hz) and high-frequency (50 Hz) knee-extensor contractions) were assessed at the same time points, as well as ~20 h into recovery (day 1). Muscle glycogen decreased 31% (p < 0.001) postgame and had returned to pregame levels on day 2. MVIC dropped 11%, whereas 50 and 20 Hz torque dropped 21% and 29% postgame, respectively, inducing a 10% reduction in the 20/50 Hz torque ratio indicative of low-frequency force depression (all p < 0.001). While MVIC torque returned to baseline on day 1, 20 and 50 Hz torque remained depressed by 9%-11% (p = 0.010-0.040), hence restoring the pre-exercise 20/50 Hz ratio. Repeated-sprint ability was only marginally reduced by 1% postgame (p = 0.041) and fully recovered on day 1. In conclusion, an elite youth ice hockey game induces substantial reductions in muscle glycogen content and muscle function, but only minor reductions in repeated-sprint ability and with complete recovery of all parameters within 1-2 days postgame.


Asunto(s)
Hockey , Adolescente , Humanos , Masculino , Hockey/fisiología , Resistencia Física/fisiología , Músculo Esquelético
6.
Int J Biometeorol ; 67(12): 1957-1964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833565

RESUMEN

The ClimApp smartphone application was developed to merge meteorological forecast data with personal information for individualized and improved thermal warning during heat and cold stress and for indoor comfort in buildings. For cold environments, ClimApp predicts the personal thermal stress and strain by the use of the Insulation REQuired model that combines weather and personal physiological data with additional consideration of the Wind Chill index based on the local weather forecast. In this study, we validated the individualized ClimApp index relative to measurements and compared it with the Universal Temperature Climate Index (UTCI). To this aim, 55 participants (27 females) were exposed to at least 1 h in an outdoor environment of 10 °C or below (average 1.4 °C air temperature, 74.9% relative humidity, and 4.7 m/s air velocity) inputting their activity level and clothing insulation as instructed by ClimApp. The UTCI and ClimApp indices were calculated and compared to the participants' perceived thermal sensation. The ClimApp index root mean square deviation (RMSD) was below the standard deviation of the perceived thermal sensation which indicates a valid prediction and the UTCI RMSD was higher than the standard deviation which indicates an invalid prediction. The correlation of ClimApp and UTCI to the perceived thermal sensation was statistically significant for both models.


Asunto(s)
Clima , Teléfono Inteligente , Femenino , Humanos , Temperatura , Tiempo (Meteorología) , Viento , Sensación Térmica/fisiología
7.
Lancet ; 398(10301): 698-708, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419205

RESUMEN

Hot ambient conditions and associated heat stress can increase mortality and morbidity, as well as increase adverse pregnancy outcomes and negatively affect mental health. High heat stress can also reduce physical work capacity and motor-cognitive performances, with consequences for productivity, and increase the risk of occupational health problems. Almost half of the global population and more than 1 billion workers are exposed to high heat episodes and about a third of all exposed workers have negative health effects. However, excess deaths and many heat-related health risks are preventable, with appropriate heat action plans involving behavioural strategies and biophysical solutions. Extreme heat events are becoming permanent features of summer seasons worldwide, causing many excess deaths. Heat-related morbidity and mortality are projected to increase further as climate change progresses, with greater risk associated with higher degrees of global warming. Particularly in tropical regions, increased warming might mean that physiological limits related to heat tolerance (survival) will be reached regularly and more often in coming decades. Climate change is interacting with other trends, such as population growth and ageing, urbanisation, and socioeconomic development, that can either exacerbate or ameliorate heat-related hazards. Urban temperatures are further enhanced by anthropogenic heat from vehicular transport and heat waste from buildings. Although there is some evidence of adaptation to increasing temperatures in high-income countries, projections of a hotter future suggest that without investment in research and risk management actions, heat-related morbidity and mortality are likely to increase.


Asunto(s)
Cambio Climático , Calentamiento Global , Trastornos de Estrés por Calor/epidemiología , Trastornos de Estrés por Calor/etiología , Calor/efectos adversos , Exposición a Riesgos Ambientales , Trastornos de Estrés por Calor/mortalidad , Trastornos de Estrés por Calor/prevención & control , Humanos , Morbilidad/tendencias , Mortalidad/tendencias , Exposición Profesional , Fenómenos Fisiológicos , Deportes/fisiología , Urbanización
8.
Lancet ; 398(10301): 709-724, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419206

RESUMEN

Heat extremes (ie, heatwaves) already have a serious impact on human health, with ageing, poverty, and chronic illnesses as aggravating factors. As the global community seeks to contend with even hotter weather in the future as a consequence of global climate change, there is a pressing need to better understand the most effective prevention and response measures that can be implemented, particularly in low-resource settings. In this Series paper, we describe how a future reliance on air conditioning is unsustainable and further marginalises the communities most vulnerable to the heat. We then show that a more holistic understanding of the thermal environment at the landscape and urban, building, and individual scales supports the identification of numerous sustainable opportunities to keep people cooler. We summarise the benefits (eg, effectiveness) and limitations of each identified cooling strategy, and recommend optimal interventions for settings such as aged care homes, slums, workplaces, mass gatherings, refugee camps, and playing sport. The integration of this information into well communicated heat action plans with robust surveillance and monitoring is essential for reducing the adverse health consequences of current and future extreme heat.


Asunto(s)
Aire Acondicionado/tendencias , Entorno Construido , Cambio Climático , Calor Extremo/efectos adversos , Calor/efectos adversos , Anciano , Envejecimiento , Agua Potable , Electricidad , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-36350277

RESUMEN

Adaptation to heat stress and hypoxia are relevant for athletes participating in Tour de France or similar cycling races taking place during the summertime in landscapes with varying altitude. Both to minimize detrimental performance effects associated with arterial desaturation occurring at moderate altitudes in elite athletes, respectively, reduce the risk of hyperthermia on hot days, but also as a pre-competition acclimatization strategy to boost blood volume in already highly adapted athletes. The hematological adaptations require weeks of exposure to manifest, but are attractive as an augmented hemoglobin mass may improve arterial oxygen delivery and hence benefit prolonged performances. Altitude training camps have in this context a long history in exercise physiology and are still common practice in elite cycling. However, heat-acclimation training provides an attractive alternative for some athletes either as a stand-alone approach or in combination with altitude. The present paper provides an update and practical perspectives on the potential to utilize hypoxia and heat exposure to optimize hematological adaptations. Furthermore, we will consider temporal aspects both in terms of onset and decay of the adaptations relevant for improved thermoregulatory capacity and respiratory adaptations to abate arterial desaturation during altitude exposure. From focus on involved physiological mechanisms, time course, and responsiveness in elite athletes, we will provide guidance based on our experience from practical implementation in cyclists preparing for prolonged stage races such as the Tour de France.

10.
Scand J Med Sci Sports ; 32 Suppl 1: 81-104, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34865242

RESUMEN

Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.


Asunto(s)
Fútbol , Atletas , Carbohidratos , Ingestión de Energía , Femenino , Humanos , Micronutrientes , Fenómenos Fisiológicos en la Nutrición Deportiva
11.
Scand J Med Sci Sports ; 32 Suppl 1: 39-53, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34427373

RESUMEN

We combined game activity analyses with skeletal muscle phenotypes and comprehensive physiological testing to elucidate factors of importance for physical performance in elite women's football. GPS-data from an experimental game, sprint and endurance testing, and muscle tissue analysis of metabolic enzyme activity, protein expression and fiber type composition were completed for international top-level women players (n = 20; age; 23 ± 4 yrs, height; 166 ± 10 cm, weight; 60 ± 8 kg; VO2max ; 51 ± 6 ml/min/kg). Muscle monocarboxylate transporter 4 (MCT4) protein expression explained 46% of the variance in total game distance, while the ability to maintain high-intensity running (HIR) during the final 15 min of the game correlated to myosin heavy chain 1 (MHCI) and Na+ -K+ ATPase ß1, FXYD1 (phospholemman) and superoxide dismutase 2 (SOD2) protein expression (range: r = 0.51-0.71; all p < 0.05). Total HIR distance correlated with (MHCIIa) protein expression (r = 0.51; p < 0.05), while muscle Na+ /H+ exchanger 1 (NHE1) protein explained 36% of the variance in game sprint distance (p < 0.05). Total game accelerations (actions >4 m/s2 ) correlated with platelet endothelial cell adhesion molecule (PECAM-1) protein expression (r = 0.51; p < 0.05), while concentric knee flexor strength explained 42-62% of the variance in intense decelerations (>4 m/s2 ). In conclusion, for elite women players' game endurance performance and resistance to end-game fatigue were affected by monocarboxylate transporter expression and myosin heavy chain profile. HIR was also correlated to ion transporter expression and muscle antioxidative capacity. Finally, the importance of functional strength and measures of muscle vascularization in relation to total game decelerations and accelerations, respectively, illustrates the complex physiological demands in elite women's football.


Asunto(s)
Rendimiento Atlético , Fútbol , Femenino , Humanos , Rendimiento Atlético/fisiología , Músculo Esquelético/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fenotipo
12.
Scand J Med Sci Sports ; 32 Suppl 1: 27-38, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34171140

RESUMEN

The present study examined skeletal muscle metabolism and changes in repeated sprint performance during match play for n = 20 competitive elite women outfield players. We obtained musculus vastus lateralis biopsies and blood samples before, after, and following intense periods in each half of a friendly match, along with 5 × 30-meter sprint tests and movement pattern analyses (10-Hz S5 Global Positioning System [GPS]). Muscle glycogen decreased by 39% and 42% after an intense period of the second half and after the match, respectively, compared to baseline (p < 0.05). Post-match, 80% type I fibers and 69% type II fibers were almost empty or completely empty of glycogen. Muscle lactate was higher (p < 0.05) after the intense period of the first half and post-match compared to baseline (14.3 ± 4.6 (±SEM) and 12.9 ± 5.7 vs. 6.4 ± 3.7 mmol/kg d.w.). Muscle phosphocreatine was reduced (p < 0.05) by 16% and 12%, respectively, after an intense period in the first and second half compared to baseline. Blood lactate and glucose increased during the match and peaked at 8.4 ± 2.0 and 7.9 ± 1.2 mmol/L, respectively. Mean 5 × 30 m sprint time declined by 3.2 ± 1.7 and 7.0 ± 2.1% after the first and second half, respectively, and 4.7 ± 1.6% (p < 0.05) after an intense period in the first half compared to baseline. In conclusion, match play in elite female football players resulted in marked glycogen depletion in both fiber types, which may explain fatigue at the end of a match. Repeated sprint ability was impaired after intense periods in the first half and after both halves, which may be associated with the observed muscle metabolite perturbations.


Asunto(s)
Rendimiento Atlético , Fútbol , Femenino , Humanos , Rendimiento Atlético/fisiología , Glucógeno/metabolismo , Ácido Láctico , Músculo Esquelético/metabolismo , Fútbol/fisiología
13.
Int J Biometeorol ; 66(1): 175-188, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34709466

RESUMEN

Heat stress decreases human physical work capacity (PWC), but the extent to which solar radiation (SOLAR) compounds this response is not well understood. This study empirically quantified how SOLAR impacts PWC in the heat, considering wide, but controlled, variations in air temperature, humidity, and clothing coverage. We also provide correction equations so PWC can be quantified outdoors using heat stress indices that do not ordinarily account for SOLAR (including the Heat Stress Index, Humidex, and Wet-Bulb Temperature). Fourteen young adult males (7 donning a work coverall, 7 with shorts and trainers) walked for 1 h at a fixed heart rate of 130 beats∙min-1, in seven combinations of air temperature (25 to 45°C) and relative humidity (20 or 80%), with and without SOLAR (800 W/m2 from solar lamps). Cumulative energy expenditure in the heat, relative to the work achieved in a cool reference condition, was used to determine PWC%. Skin temperature was the primary determinant of PWC in the heat. In dry climates with exposed skin (0.3 Clo), SOLAR caused PWC to decrease exponentially with rising air temperature, whereas work coveralls (0.9 Clo) negated this effect. In humid conditions, the SOLAR-induced reduction in PWC was consistent and linear across all levels of air temperature and clothing conditions. Wet-Bulb Globe Temperature and the Universal Thermal Climate Index represented SOLAR correctly and did not require a correction factor. For the Heat Stress Index, Humidex, and Wet-Bulb Temperature, correction factors are provided enabling forecasting of heat effects on work productivity.


Asunto(s)
Trastornos de Estrés por Calor , Vestuario , Calor , Humanos , Humedad , Masculino , Temperatura Cutánea , Temperatura , Adulto Joven
14.
Int J Biometeorol ; 65(7): 1215-1229, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33674931

RESUMEN

Occupational heat stress directly hampers physical work capacity (PWC), with large economic consequences for industries and regions vulnerable to global warming. Accurately quantifying PWC is essential for forecasting impacts of different climate change scenarios, but the current state of knowledge is limited, leading to potential underestimations in mild heat, and overestimations in extreme heat. We therefore developed advanced empirical equations for PWC based on 338 work sessions in climatic chambers (low air movement, no solar radiation) spanning mild to extreme heat stress. Equations for PWC are available based on air temperature and humidity, for a suite of heat stress assessment metrics, and mean skin temperature. Our models are highly sensitive to mild heat and to our knowledge are the first to include empirical data across the full range of warm and hot environments possible with future climate change across the world. Using wet bulb globe temperature (WBGT) as an example, we noted 10% reductions in PWC at mild heat stress (WBGT = 18°C) and reductions of 78% in the most extreme conditions (WBGT = 40°C). Of the different heat stress indices available, the heat index was the best predictor of group level PWC (R2 = 0.96) but can only be applied in shaded conditions. The skin temperature, but not internal/core temperature, was a strong predictor of PWC (R2 = 0.88), thermal sensation (R2 = 0.84), and thermal comfort (R2 = 0.73). The models presented apply to occupational workloads and can be used in climate projection models to predict economic and social consequences of climate change.


Asunto(s)
Trastornos de Estrés por Calor , Exposición Profesional , Cambio Climático , Calor , Humanos , Humedad
15.
J Sports Sci ; 39(18): 2115-2122, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33956567

RESUMEN

Comprehensive information regarding neuromuscular function, as assessed through force-velocity-power (FVP) profiling, is of importance for training optimization in athletes. However, neuromuscular function is highly task-specific, potentially governed by dissimilarity of the overall orientation of forceapplication. The hip thrust (HT) exercise is thought to be of relevance for sprinting considering its antero-posterior force orientation and considerable hip-extensor recruitment, however, the association between their respective FVP profiles remains unexplored. Therefore, to address the concept of force orientation specificity within FVP profiling, the maximal theoretical neuromuscular capabilities of 41 professional male footballers (22.1 ± 4.1 years, 181.8 ± 6.4 cm, 76.4 ± 5.5 kg) were assessed during sprint acceleration, squat jumping (SJ) and the HT exercise. No significant associations were observed for maximal theoretical force or velocity between the three FVP profiling modalities, however, maximal theoretical power (Pmax) was correlated between sprinting and SJ (r = 0.73, P < 0.001) and HT and SJ (r = 0.44, P = 0.01), but not between sprinting and HT (r = 0.18, P = 0.36). In conclusion, although Pmax may be considered a somewhat universal lower-extremity capability, neuromuscular function is associated with substantial task-specificity not solely governed by the overall direction of force orientation.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicio Pliométrico , Carrera/fisiología , Fútbol/fisiología , Adolescente , Adulto , Humanos , Masculino , Adulto Joven
16.
Environ Health ; 19(1): 95, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887627

RESUMEN

BACKGROUND: Climate change is set to exacerbate occupational heat strain, the combined effect of environmental and internal heat stress on the body, threatening human health and wellbeing. Therefore, identifying effective, affordable, feasible and sustainable solutions to mitigate the negative effects on worker health and productivity, is an increasingly urgent need. OBJECTIVES: To systematically identify and evaluate methods that mitigate occupational heat strain in order to provide scientific-based guidance for practitioners. METHODS: An umbrella review was conducted in biomedical databases employing the following eligibility criteria: 1) ambient temperatures > 28 °C or hypohydrated participants, 2) healthy adults, 3) reported psychophysiological (thermal comfort, heart rate or core temperature) and/or performance (physical or cognitive) outcomes, 4) written in English, and 5) published before November 6, 2019. A second search for original research articles was performed to identify interventions of relevance but lacking systematic reviews. All identified interventions were independently evaluated by all co-authors on four point scales for effectiveness, cost, feasibility and environmental impact. RESULTS: Following screening, 36 systematic reviews fulfilled the inclusion criteria. The most effective solutions at mitigating occupational heat strain were wearing specialized cooling garments, (physiological) heat acclimation, improving aerobic fitness, cold water immersion, and applying ventilation. Although air-conditioning and cooling garments in ideal settings provide best scores for effectiveness, the limited applicability in certain industrial settings, high economic cost and high environmental impact are drawbacks for these solutions. However, (physiological) acclimatization, planned breaks, shading and optimized clothing properties are attractive alternative solutions when economic and ecological sustainability aspects are included in the overall evaluation. DISCUSSION: Choosing the most effective solution or combinations of methods to mitigate occupational heat strain will be scenario-specific. However, this paper provides a framework for integrating effectiveness, cost, feasibility (indoors and outdoor) and ecologic sustainability to provide occupational health and safety professionals with evidence-based guidelines.


Asunto(s)
Salud Global , Trastornos de Estrés por Calor/prevención & control , Salud Laboral/estadística & datos numéricos , Medicina del Trabajo/métodos , Cambio Climático , Humanos , Estrés Fisiológico
17.
Scand J Med Sci Sports ; 30(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31596971

RESUMEN

PURPOSE: We tested the hypothesis that participation in small-sided team handball training could provide beneficial effects on cardiovascular and metabolic parameters in overweight premenopausal women with special focus on the importance of prior team handball experience. METHODS: A 16-week RCT training intervention was conducted in overweight premenopausal women randomized into three groups: a team handball training group without prior experience (UN; n = 13), a team handball group with prior experience (EXP; n = 10), and an inactive control group (CON; n = 9). Both UN and EXP completed 1.6 ± 0.3 training sessions per week with average heart rates of 84 ± 5 and 85 ± 9% of maximal heart rate, respectively. Cardiovascular and metabolic parameters were assessed before and after the intervention. RESULTS: Compared to CON, UN had significant increases in VO2max  (7 ± 4%) and intermittent endurance performance (26 ± 14%) as well as reduced total fat mass (4 ± 6%), total fat percentage (4 ± 5%), and android fat mass (7 ± 12%), respectively (all P < .05). Compared to UN and CON, EXP displayed increased left ventricular mass and left ventricular mass index (both P < .05) after the training period. There were no significant changes between any of the groups in muscle mass, blood lipids, resting heart rate, and blood pressure (all P > .05). CONCLUSION: Small-sided team handball training in overweight premenopausal women resulted in improvement of VO2max and body composition for participants with minimal team handball experience, indicating that prior team handball experience is not a prerequisite for improving physiological parameters of importance for health. Furthermore, EXP displayed cardiac adaptations, including increased left ventricular mass and left ventricular mass index.


Asunto(s)
Sistema Cardiovascular , Ejercicio Físico , Sobrepeso/fisiopatología , Deportes , Adaptación Fisiológica , Adulto , Presión Sanguínea , Composición Corporal , Capacidad Cardiovascular , Ecocardiografía , Femenino , Frecuencia Cardíaca , Humanos , Persona de Mediana Edad , Consumo de Oxígeno , Premenopausia
18.
J Strength Cond Res ; 32(6): 1754-1761, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29543701

RESUMEN

Madsen, CM, Badault, B, and Nybo, L. Cross-sectional and longitudinal examination of exercise capacity in elite youth badminton players. J Strength Cond Res 32(6): 1754-1761, 2018-Badminton-specific speed and endurance performance was evaluated in both cross-sectional and longitudinal studies of elite youth players and compared with the physiological capacities of world top-50 singles players. The cross-sectional study involved 10 males in the category U15 (<15 years), 10 U17, 9 U19, and 4 senior elite players. They performed 30-m sprint, countermovement jump, and badminton-specific speed (B-SPEED) and endurance (B-ENDURANCE) tests. The longitudinal data were collected for 10 U15 players with 1- and 2-year follow-up measures. Compared with seniors, B-SPEED performance was 20 ± 5% slower for U15 (p < 0.001), 7 ± 3% slower for U17 (p < 0.05), and nonsignificantly slower (3 ± 3%; p = 0.27) for U19. B-ENDURANCE performance was 45 ± 11% shorter for U15 (p < 0.001), 25 ± 7% shorter for U17 (p < 0.001), and 17 ± 10% shorter for U19 (p < 0.01). The longitudinal data for U15 revealed that B-SPEED performance improved from a 19 ± 5% (p < 0.001) deficit at baseline to 5 ± 5% (p = 0.23) at first-year, and 2 ± 3% (p = 0.43) at second-year follow-up. B-ENDURANCE performance improved from a 43 ± 11% deficit at baseline to 27 ± 10 and 17 ± 7% at 1- and 2-year follow-up (p < 0.001), respectively. Countermovement jump also improved with aging from 29 ± 5% deficit for U15 to 13 ± 6% deficit for U19 (p < 0.01). In conclusion, B-SPEED improves markedly with aging in youth elite players to achieve, by age 19, values matching world-class players. Endurance improved markedly, but with a significant deficit remaining in comparison with senior elite players.


Asunto(s)
Rendimiento Atlético/fisiología , Resistencia Física , Deportes de Raqueta/fisiología , Carrera/fisiología , Adolescente , Adulto , Factores de Edad , Estudios Transversales , Prueba de Esfuerzo , Humanos , Estudios Longitudinales , Masculino , Adulto Joven
19.
Eur J Appl Physiol ; 116(2): 301-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26480851

RESUMEN

PURPOSE: We investigated the muscle activation patterns and the center of pressure (COP) displacement in stepping behavior to determine the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during support surface translation. METHODS: Surface muscle activity of eleven leg and trunk muscles was analyzed to identify sets of four muscle modes (M-modes). Linear combination of M-modes and their relationship to changes in the COP shift in the anterior­posterior (AP) direction were then determined. Uncontrolled manifold (UCM) analysis was performed to determine variance components in the M-mode space and indices of M-mode synergy stabilizing the COP shift. RESULTS: Prior to the step initiation, synergies stabilizing COP were seen in both conditions. The synergy index started to drop before a change in the averaged activation levels across trials in postural muscles. The magnitude of synergy index was significantly larger under the perturbation condition. CONCLUSIONS: Results of the study have revealed that the central nervous system is able to prepare multi-muscle synergies when a step is performed during support surface translation. Prior to APAs, ASAs reduce stability of COPAP coordinate that is to be adjusted during the APAs. These findings may help get closer to understanding of physiological mechanism of postural preparation to external perturbation.


Asunto(s)
Ejercicio Físico/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Músculo Esquelético/inervación
20.
Eur J Appl Physiol ; 116(2): 251-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26449984

RESUMEN

PURPOSE: To examine how match performance parameters in trained footballers relate to skeletal muscle parameters, sprint ability and intermittent exercise performance. METHODS: 19 male elite football players completed an experimental game with physical performance determined by video analysis and exercise capacity assessed by intermittent Yo-Yo IR1 and IR2 tests, and a repeated sprint test (RST). Muscle tissue was obtained for analysis of metabolic enzyme maximal activity and key muscle protein expression. RESULTS: Total game distance, distance deficit from first to second half and high-intensity running in the final 15 min of the game were all correlated to the players' Yo-Yo IR1 performance (r = 0.55-0.87) and beta-hydroxyacyl-CoA-dehydrogenase (HAD) maximal activity (r = 0.55-0.65). Furthermore, platelet/endothelial cell adhesion molecule-1 (PECAM1) protein expression was weakly (r = 0.46) correlated to total game distance. Peak 5-min game distance faster than 21 km h(-1) was related to the Na(+)-K(+) ATPase subunit (α1, α2, ß1 and FXYD1) protein levels (r = 0.54-0.70), while Yo-Yo IR2 performance explained 40 % of the variance in high-intensity game distance. Total and 1-min peak sprint distance correlated to myosin heavy chain II/I ratio (MHCII/I ratio) and sarcoendoplasmic reticulum Ca(2+) ATPase isoform-1 (SERCA1) protein (r = 0.56-0.86), while phosphofructokinase (PFK) maximal activity also correlated to total sprint distance (r = 0.46). CONCLUSION: The findings emphasize the complexity of parameters predicting physical football performance with Yo-Yo IR1 and HAD as the best predictors of total distance, while high expression of Na(+)-K(+) ATPase proteins and the Yo-Yo IR2 test are better predictors of high-intensity performance. Finally, sprint performance relates to skeletal muscle fiber-type composition.


Asunto(s)
Fútbol Americano/fisiología , Músculo Esquelético/fisiología , Resistencia Física , Adulto , Humanos , Masculino , Fatiga Muscular , Músculo Esquelético/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA