Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34450719

RESUMEN

Narrow band-gap semiconductors, namely ternary InAsSb alloys, find substantial technological importance for mid-infrared application as photodetectors in medical diagnostics or environmental monitoring. Thus, it is crucial to develop electrical contacts for these materials because they are the fundamental blocks of all semiconductor devices. This study demonstrates that electroplated gold contacts can be considered as a simple and reliable metallization technology for the electrical-response examination of a test structure. Unalloyed electroplated Au contacts to InAsSb exhibit specific contact resistivity even lower than vacuum-deposited standard Ti-Au. Moreover, temperature-dependent transport properties, such as Hall carrier concentration and mobility, show similar trends, with a minor shift in the transition temperature. It can be associated with a difference in metallization technology, mainly the presence of a Ti interlayer in vacuum-deposited contacts. Such a transition may give insight into not only the gentle balance changes between conductivity channels but also an impression of changing the dominance of carrier type from p- to n-type. The magnetotransport experiments assisted with mobility spectrum analysis clearly show that such an interpretation is incorrect. InAsSb layers are strongly p-type dominant, with a clear contribution from valence band carriers observed at the whole analyzed temperature range. Furthermore, the presence of thermally activated band electrons is detected at temperatures higher than 220 K.

2.
Nat Biotechnol ; 41(9): 1320-1331, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36658342

RESUMEN

The human microbiome influences the efficacy and safety of a wide variety of commonly prescribed drugs. Designing precision medicine approaches that incorporate microbial metabolism would require strain- and molecule-resolved, scalable computational modeling. Here, we extend our previous resource of genome-scale metabolic reconstructions of human gut microorganisms with a greatly expanded version. AGORA2 (assembly of gut organisms through reconstruction and analysis, version 2) accounts for 7,302 strains, includes strain-resolved drug degradation and biotransformation capabilities for 98 drugs, and was extensively curated based on comparative genomics and literature searches. The microbial reconstructions performed very well against three independently assembled experimental datasets with an accuracy of 0.72 to 0.84, surpassing other reconstruction resources and predicted known microbial drug transformations with an accuracy of 0.81. We demonstrate that AGORA2 enables personalized, strain-resolved modeling by predicting the drug conversion potential of the gut microbiomes from 616 patients with colorectal cancer and controls, which greatly varied between individuals and correlated with age, sex, body mass index and disease stages. AGORA2 serves as a knowledge base for the human microbiome and paves the way to personalized, predictive analysis of host-microbiome metabolic interactions.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisión , Genoma , Genómica , Microbioma Gastrointestinal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA