Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 129(10): 2003-15, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27044754

RESUMEN

One of the defining pathological features of Alzheimer's disease is the intraneuronal accumulation of tau (also known as MAPT) protein. Tau is also secreted from neurons in response to various stimuli and accumulates in the cerebrospinal fluid of Alzheimer's disease patients. Tau pathology might spread from cell to cell through a mechanism involving secretion and uptake. Here, we developed an assay to follow cellular release and uptake of tau dimers. Individual silencing of ten common late-onset Alzheimer's disease risk genes in HEK293T cells expressing the tau reporters suggested that FRMD4A is functionally linked to tau secretion. FRMD4A depletion by using RNA interference (RNAi) reduced and overexpression increased tau secretion. The activity of cytohesins, interactors of FRMD4A and guanine-nucleotide-exchange factors of Arf6, was necessary for FRMD4A-induced tau secretion. Increased Arf6 and cell polarity signaling through Par6 and atypical protein kinase Cζ (aPKCζ) stimulated tau secretion. In mature cortical neurons, FRMD4A RNAi or inhibition of cytohesins strongly upregulated secretion of endogenous tau. These results suggest that FRMD4A, a genetic risk factor for late-onset Alzheimer's disease, regulates tau secretion by activating cytohesin-Arf6 signaling. We conclude that genetic risk factors of Alzheimer's disease might modulate disease progression by altering tau secretion.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas tau/genética , Factor 6 de Ribosilación del ADP , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Agregación Patológica de Proteínas/genética , Transducción de Señal , Proteínas tau/metabolismo
2.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172904

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Estudio de Asociación del Genoma Completo , Microglía/patología , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
3.
J Biol Chem ; 287(9): 6743-52, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22235112

RESUMEN

Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3ß kinase activity.


Asunto(s)
Degeneración Nerviosa/metabolismo , Receptores de GABA-A/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoesqueleto/metabolismo , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Toxinas Marinas , Ratones , Peptidilprolil Isomerasa de Interacción con NIMA , Naftoquinonas/farmacología , Neuroblastoma , Oxazoles/farmacología , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/metabolismo , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Purinas/farmacología , Ratas , Roscovitina
4.
NPJ Parkinsons Dis ; 9(1): 107, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422510

RESUMEN

Common and rare variants in the LRRK2 locus are associated with Parkinson's disease (PD) risk, but the downstream effects of these variants on protein levels remain unknown. We performed comprehensive proteogenomic analyses using the largest aptamer-based CSF proteomics study to date (7006 aptamers (6138 unique proteins) in 3107 individuals). The dataset comprised six different and independent cohorts (five using the SomaScan7K (ADNI, DIAN, MAP, Barcelona-1 (Pau), and Fundació ACE (Ruiz)) and the PPMI cohort using the SomaScan5K panel). We identified eleven independent SNPs in the LRRK2 locus associated with the levels of 25 proteins as well as PD risk. Of these, only eleven proteins have been previously associated with PD risk (e.g., GRN or GPNMB). Proteome-wide association study (PWAS) analyses suggested that the levels of ten of those proteins were genetically correlated with PD risk, and seven were validated in the PPMI cohort. Mendelian randomization analyses identified GPNMB, LCT, and CD68 causal for PD and nominate one more (ITGB2). These 25 proteins were enriched for microglia-specific proteins and trafficking pathways (both lysosome and intracellular). This study not only demonstrates that protein phenome-wide association studies (PheWAS) and trans-protein quantitative trail loci (pQTL) analyses are powerful for identifying novel protein interactions in an unbiased manner, but also that LRRK2 is linked with the regulation of PD-associated proteins that are enriched in microglial cells and specific lysosomal pathways.

5.
Front Cell Dev Biol ; 9: 561086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33748099

RESUMEN

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson's disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.

6.
Cell Death Dis ; 11(2): 84, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015326

RESUMEN

Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1-95 and 61-140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Línea Celular , Espacio Extracelular/metabolismo , Técnicas de Inactivación de Genes , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/toxicidad , Agregado de Proteínas , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad
7.
Prog Neurobiol ; 180: 101644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238088

RESUMEN

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Humanos , Neuropatología/métodos
8.
Medicines (Basel) ; 5(3)2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061484

RESUMEN

Background: Heparin and heparin-related sulphated carbohydrates inhibit ligand binding of the receptor for advanced glycation end products (RAGE). Here, we have studied the ability of heparin to inhibit homophilic interactions of RAGE in living cells and studied how heparin related structures interfere with RAGE⁻ligand interactions. Methods: Homophilic interactions of RAGE were studied with bead aggregation and living cell protein-fragment complementation assays. Ligand binding was analyzed with microwell binding and chromatographic assays. Cell surface advanced glycation end product binding to RAGE was studied using PC3 cell adhesion assay. Results: Homophilic binding of RAGE was mediated by V1- and modulated by C2-domain in bead aggregation assay. Dimerisation of RAGE on the living cell surface was inhibited by heparin. Sulphated K5 carbohydrate fragments inhibited RAGE binding to amyloid ß-peptide and HMGB1. The inhibition was dependent on the level of sulfation and the length of the carbohydrate backbone. α-d-Glucopyranosiduronic acid (glycyrrhizin) inhibited RAGE binding to advanced glycation end products in PC3 cell adhesion and protein binding assays. Further, glycyrrhizin inhibited HMGB1 and HMGB1 A-box binding to heparin. Conclusions: Our results show that K5 polysaccharides and glycyrrhizin are promising candidates for RAGE targeting drug development.

9.
Cell Death Dis ; 9(7): 757, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988147

RESUMEN

Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson's disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death.Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin-proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death.We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.


Asunto(s)
Autofagia/fisiología , Exosomas/metabolismo , alfa-Sinucleína/metabolismo , Autofagosomas/metabolismo , Western Blotting , Línea Celular , Humanos , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Neurobiol Aging ; 36(2): 1221.e15-28, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25281018

RESUMEN

In this study, we have assessed the expression and splicing status of genes involved in the pathogenesis or affecting the risk of Alzheimer's disease (AD) in the postmortem inferior temporal cortex samples obtained from 60 subjects with varying degree of AD-related neurofibrillary pathology. These subjects were grouped based on neurofibrillary pathology into 3 groups: Braak stages 0-II, Braak stages III-IV, and Braak stages V-VI. We also examined the right frontal cortical biopsies obtained during life from 22 patients with idiopathic shunt-responding normal pressure hydrocephalus, a disease that displays similar pathologic alterations as seen in AD. These 22 patients were categorized according to dichotomized amyloid-ß positive or negative pathology in the biopsies. We observed that the expression of FRMD4A significantly decreased, and the expression of MS4A6A significantly increased in relation to increasing AD-related neurofibrillary pathology. Moreover, the expression of 2 exons in both CLU and TREM2 significantly increased with increase in AD-related neurofibrillary pathology. However, a similar trend toward increased expression in CLU and TREM2 was observed with most of the studied exons, suggesting a global change in the expression rather than altered splicing. Correlation of gene expression with well-established AD-related factors, such as α-, ß-, and γ-secretase activities, brain amyloid-ß42 levels, and cerebrospinal fluid biomarkers, revealed a positive correlation between ß-secretase activity and the expression of TREM2 and BIN1. In expression quantitative trait loci analysis, we did not detect significant effects of the risk alleles on gene expression or splicing. Analysis of the normal pressure hydrocephalus biopsies revealed no differences in the expression or splicing profiles of the studied genes between amyloid-ß positive and negative patients. Using the protein-protein interaction-based in vitro pathway analysis tools, we found that downregulation of FRMD4A associated with increased APP-ß-secretase interaction, increased amyloid-ß40 secretion, and altered phosphorylation of tau. Taken together, our results suggest that the expression of FRMD4A, MS4A6A, CLU, and TREM2 is altered in relation to increasing AD-related neurofibrillary pathology, and that FRMD4A may play a role in amyloidogenic and tau-related pathways in AD. Therefore, investigation of gene expression changes in the brain and effects of the identified genes on disease-associated pathways in vitro may provide mechanistic insights on how alterations in these genes may contribute to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Transcriptoma/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Femenino , Expresión Génica , Humanos , Técnicas In Vitro , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neurofibrillas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Riesgo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
11.
PLoS One ; 9(6): e98619, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24932508

RESUMEN

Amyloid-ß precursor protein (APP) plays a central role in pathogenesis of Alzheimer's disease. APP has a short half-life and undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic adaptor proteins, and also by interactions with lipids. Currently, cellular regulation of APP is mostly studied based on appearance of APP-derived proteolytic fragments to conditioned media and cellular extracts. Here, we have developed a novel live-cell assay system based on several indirect measures that reflect altered APP trafficking and processing in cells. Protein-fragment complementation assay technology for detection of APP-BACE1 protein-protein interaction forms the core of the new assay. In a multiplex form, the assay can measure four endpoints: total cellular APP level, total secreted sAPP level in media, APP-BACE1 interaction in cells and in exosomes released by the cells. Functional validation of the assay with pharmacological and genetic tools revealed distinct patterns of cellular fates of APP, with immediate mechanistic implications. This new technology will facilitate functional genomics studies of late-onset Alzheimer's disease, drug discovery efforts targeting APP and characterization of the physiological functions of APP and its proteolytic fragments.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Fragmentos de Péptidos/metabolismo , Precursor de Proteína beta-Amiloide/química , Animales , Línea Celular , Medios de Cultivo Condicionados , Exosomas/metabolismo , Semivida , Ratones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA