Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Physiol ; 601(13): 2621-2634, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37114864

RESUMEN

Smooth muscle voltage-gated K+ (Kv) channels in resistance arteries control vascular tone and contribute to the coupling of blood flow with local metabolic activity. Members of the Kv1 family are expressed in vascular smooth muscle and are modulated upon physiological elevation of local metabolites, including the glycolytic end-product l-lactate and superoxide-derived hydrogen peroxide (H2 O2 ). Here, we show that l-lactate elicits vasodilatation of small-diameter mesenteric arteries in a mechanism that requires lactate dehydrogenase (LDH). Using the inside-out configuration of the patch clamp technique, we show that increases in NADH that reflect LDH-mediated conversion of l-lactate to pyruvate directly stimulate the activity of single Kv1 channels and significantly enhance the sensitivity of Kv1 activity to H2 O2 . Consistent with these findings, H2 O2 -evoked vasodilatation was significantly greater in the presence of 10 mM l-lactate relative to lactate-free conditions, yet was abolished in the presence of 10 mM pyruvate, which shifts the LDH reaction towards the generation of NAD+ . Moreover, the enhancement of H2 O2 -induced vasodilatation was abolished in arteries from double transgenic mice with selective overexpression of the intracellular Kvß1.1 subunit in smooth muscle cells. Together, our results indicate that the Kvß complex of native vascular Kv1 channels serves as a nodal effector for multiple redox signals to precisely control channel activity and vascular tone in the face of dynamic tissue-derived metabolic cues. KEY POINTS: Vasodilatation of mesenteric arteries by elevated external l-lactate requires its conversion by lactate dehydrogenase. Application of either NADH or H2 O2 potentiates single Kv channel currents in excised membrane patches from mesenteric artery smooth muscle cells. The binding of NADH enhances the stimulatory effects of H2 O2 on single Kv channel activity. The vasodilatory response to H2 O2 is differentially modified upon elevation of external l-lactate or pyruvate. The presence of l-lactate enhances the vasodilatory response to H2 O2 via the Kvß subunit complex in smooth muscle.


Asunto(s)
NAD , Canales de Potasio con Entrada de Voltaje , Ratones , Animales , NAD/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Dilatación , Canales de Potasio con Entrada de Voltaje/fisiología , Arterias Mesentéricas , Oxidación-Reducción , Piruvatos/metabolismo , Piruvatos/farmacología , Lactato Deshidrogenasas/metabolismo
2.
J Physiol ; 601(13): 2547-2592, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36744541

RESUMEN

This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Humanos , Arritmias Cardíacas , Miocitos Cardíacos
4.
Inhal Toxicol ; 34(11-12): 319-328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913821

RESUMEN

Aim: The cardiovascular toxicity of unheated and heated flavorants and their products as commonly present in electronic cigarette liquids (e-liquids) was evaluated previously in vitro. Based on the results of in vitro assays, cinnamaldehyde, eugenol, menthol, and vanillin were selected to conduct a detailed chemical analysis of the aerosol generated following heating of each compound both at 250 and 750 °C. Materials and Methods: Each flavoring was heated in a drop-tube furnace within a quartz tube. The combustion atmosphere was captured using different methods to enable analysis of 308 formed compounds. Volatile organic compounds (VOCs) were captured with an evacuated Summa canister and assayed via gas chromatography interfaced with mass spectrometry (GC-MS). Carbonyls (aldehydes and ketones) were captured using a 2,4-dinitrophenylhydrazine (DNPH) cartridge and assayed via a high-performance liquid chromatography-ultra-violet (HPLC-UV) assay. Polyaromatic hydrocarbons (PAHs) were captured using an XAD cartridge and filter, and extracts were assayed using GC-MS/MS. Polar compounds were assayed after derivatization of the XAD/filter extracts and analyzed via GC-MS. Conclusion: At higher temperature, both cinnamaldehyde and menthol combustion significantly increased formaldehyde and acetaldehyde levels. At higher temperature, cinnamaldehyde, eugenol, and menthol resulted in increased benzene concentrations. At low temperature, all four compounds led to higher levels of benzoic acid. These data show that products of thermal degradation of common flavorant compounds vary by flavorant and by temperature and include a wide variety of harmful and potentially harmful constituents (HPHCs).


Asunto(s)
Aerosoles , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes , Calor , Productos de Tabaco , Acetaldehído/análisis , Acroleína/análisis , Aerosoles/química , Benceno/análisis , Ácido Benzoico/análisis , Eugenol/análisis , Formaldehído/análisis , Cetonas/análisis , Mentol/análisis , Espectrometría de Masas en Tándem , Productos de Tabaco/análisis , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/química
5.
J Mol Cell Cardiol ; 137: 93-106, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31639389

RESUMEN

Voltage-gated potassium (Kv) channels control myocardial repolarization. Pore-forming Kvα proteins associate with intracellular Kvß subunits, which bind pyridine nucleotides with high affinity and differentially regulate channel trafficking, plasmalemmal localization and gating properties. Nevertheless, it is unclear how Kvß subunits regulate myocardial K+ currents and repolarization. Here, we tested the hypothesis that Kvß2 subunits regulate the expression of myocardial Kv channels and confer redox sensitivity to Kv current and cardiac repolarization. Co-immunoprecipitation and in situ proximity ligation showed that in cardiac myocytes, Kvß2 interacts with Kv1.4, Kv1.5, Kv4.2, and Kv4.3. Cardiac myocytes from mice lacking Kcnab2 (Kvß2-/-) had smaller cross sectional areas, reduced sarcolemmal abundance of Kvα binding partners, reduced Ito, IK,slow1, and IK,slow2 densities, and prolonged action potential duration compared with myocytes from wild type mice. These differences in Kvß2-/- mice were associated with greater P wave duration and QT interval in electrocardiograms, and lower ejection fraction, fractional shortening, and left ventricular mass in echocardiographic and morphological assessments. Direct intracellular dialysis with a high NAD(P)H:NAD(P)+ accelerated Kv inactivation in wild type, but not Kvß2-/- myocytes. Furthermore, elevated extracellular levels of lactate increased [NADH]i and prolonged action potential duration in wild type cardiac myocytes and perfused wild type, but not Kvß2-/-, hearts. Taken together, these results suggest that Kvß2 regulates myocardial electrical activity by supporting the functional expression of proteins that generate Ito and IK,slow, and imparting redox and metabolic sensitivity to Kv channels, thereby coupling cardiac repolarization to myocyte metabolism.


Asunto(s)
Activación del Canal Iónico , Miocardio/metabolismo , Subunidades de Proteína/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Potenciales de Acción , Animales , Pruebas de Función Cardíaca , Ácido Láctico/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Nucleótidos/metabolismo , Oxidación-Reducción , Piridinas/metabolismo , Canales de Potasio Shal/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 316(4): H889-H899, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735434

RESUMEN

Myocardial ischemia-reperfusion (I/R) results in the generation of free radicals, accumulation of lipid peroxidation-derived unsaturated aldehydes, variable angina (pain), and infarction. The transient receptor potential ankyrin 1 (TRPA1) mediates pain signaling and is activated by unsaturated aldehydes, including acrolein and 4-hydroxynonenal. The contribution of TRPA1 (a Ca2+-permeable channel) to I/R-induced myocardial injury is unknown. We tested the hypothesis that cardiac TRPA1 confers myocyte sensitivity to aldehyde accumulation and promotes I/R injury. Although basal cardiovascular function in TRPA1-null mice was similar to that in wild-type (WT) mice, infarct size was significantly smaller in TRPA1-null mice than in WT mice (34.1 ± 9.3 vs. 14.3 ± 9.9% of the risk region, n = 8 and 7, respectively, P < 0.05), despite a similar I/R-induced area at risk (40.3 ±8.4% and 42.2 ± 11.3% for WT and TRPA1-null mice, respectively) after myocardial I/R (30 min of ischemia followed by 24 h of reperfusion) in situ. Positive TRPA1 immunofluorescence was present in murine and human hearts and was colocalized with connexin43 at intercalated disks in isolated murine cardiomyocytes. Cardiomyocyte TRPA1 was confirmed by quantitative RT-PCR, DNA sequencing, Western blot analysis, and electrophysiology. A role of TRPA1 in cardiomyocyte toxicity was demonstrated in isolated cardiomyocytes exposed to acrolein, an I/R-associated toxin that induces Ca2+ accumulation and hypercontraction, effects significantly blunted by HC-030031, a TRPA1 antagonist. Protection induced by HC-030031 was quantitatively equivalent to that induced by SN-6, a Na+/Ca2+ exchange inhibitor, further supporting a role of Ca2+ overload in acrolein-induced cardiomyocyte toxicity. These data indicate that cardiac TRPA1 activation likely contributes to I/R injury and, thus, that TRPA1 may be a novel therapeutic target for decreasing myocardial I/R injury. NEW & NOTEWORTHY Transient receptor potential ankyrin 1 (TRPA1) activation mediates increased blood flow, edema, and pain reception, yet its role in myocardial ischemia-reperfusion (I/R) injury is unknown. Genetic ablation of TRPA1 significantly decreased myocardial infarction after I/R in mice. Functional TRPA1 in cardiomyocytes was enriched in intercalated disks and contributed to acrolein-induced Ca2+ overload and hypercontraction. These data indicate that I/R activation of TRPA1 worsens myocardial infarction; TRPA1 may be a potential target to mitigate I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Canal Catiónico TRPA1/genética , Acetanilidas/farmacología , Aldehídos/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Purinas/farmacología , Canal Catiónico TRPA1/antagonistas & inhibidores
7.
Circ Res ; 120(5): e7-e23, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28137917

RESUMEN

RATIONALE: Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE: To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS: CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3ß phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS: Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3ß/Fyn pathway via increased activity of Nrf2.


Asunto(s)
Diabetes Mellitus/metabolismo , Células Progenitoras Endoteliales/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isquemia/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores CXCR/biosíntesis , Animales , Células Cultivadas , Diabetes Mellitus/patología , Técnicas de Silenciamiento del Gen , Células HEK293 , Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Isquemia/patología , Masculino , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Neovascularización Fisiológica/fisiología , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29239491

RESUMEN

Arterial tone is tightly regulated by a variety of potassium (K+ ) permeable ion channels at the sarcolemma of vascular smooth muscle cells. In particular, several types of KV channels provide a significant hyperpolarizing influence and serve to oppose pressure and agonist-induced membrane depolarization to promote smooth muscle relaxation and augmentation of vascular diameter and blood flow. In recent years, a number of studies have underscored previously unknown roles for particular KV subunits, new modes of channel regulation, and distinct cellular functions for these channels during physiological and pathological conditions. In this overview, we highlight articles contained in this Special Topics Issue that focus on the latest, most exciting advancements in the field of KV channels in the microcirculation. The collection of articles aims to highlight important new discoveries and controversies in the field of vascular KV channels as well as to shed light on key questions that require additional investigation.


Asunto(s)
Microcirculación/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Humanos , Músculo Liso Vascular/citología
9.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29110409

RESUMEN

Smooth muscle voltage-gated potassium (Kv) channels are important regulators of microvascular tone and tissue perfusion. Recent studies indicate that Kv1 channels represent a key component of the physiological coupling between coronary blood flow and myocardial oxygen demand. While the mechanisms by which metabolic changes in the heart are transduced to alter coronary Kv1 channel gating and promote vasodilation are unclear, a growing body of evidence underscores a pivotal role of Kv1 channels in sensing the cellular redox status. Here, we discuss current knowledge of mechanisms of Kv channel redox regulation with respect to pyridine nucleotide modulation of Kv1 function via ancillary Kvß proteins as well as direct modulation of channel activity via reactive oxygen and nitrogen species. We identify areas of additional research to address the integration of regulatory processes under altered physiological and pathophysiological conditions that may reveal insights into novel treatment strategies for conditions in which the matching of coronary blood supply and myocardial oxygen demand is compromised.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/fisiología , Nucleótidos de Pirimidina/metabolismo , Animales , Vasos Coronarios/química , Humanos , Microcirculación , Oxidación-Reducción , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Microcirculation ; 25(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044853

RESUMEN

Voltage-gated potassium (KV ) channels are key regulators of vascular smooth muscle contractility and vascular tone, and thus have major influence on the microcirculation. KV channels are important determinants of vascular smooth muscle membrane potential (Em ). A number of KV subunits are expressed in the plasma membrane of smooth muscle cells. Each subunit confers distinct kinetics and regulatory properties that allow for fine control of Em to orchestrate vascular tone. Modifications in KV subunit expression and/or channel activity can contribute to changes in vascular smooth muscle contractility in response to different stimuli and in diverse pathological conditions. Consistent with this, a number of studies suggest alterations in KV subunit expression and/or function as underlying contributing mechanisms for small resistance artery dysfunction in pathologies such as hypertension and metabolic disorders, including diabetes. Here, we review our current knowledge on the effects of these pathologies on KV channel expression and function in vascular smooth muscle cells, and the repercussions on (micro)vascular function.


Asunto(s)
Músculo Liso Vascular/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Humanos , Hipertensión/fisiopatología , Enfermedades Metabólicas/fisiopatología
11.
J Biol Chem ; 290(12): 7918-29, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25670860

RESUMEN

Enhanced arterial tone is a leading cause of vascular complications during diabetes. Voltage-gated K(+) (KV) channels are key regulators of vascular smooth muscle cells (VSMCs) contractility and arterial tone. Whether impaired KV channel function contributes to enhance arterial tone during diabetes is unclear. Here, we demonstrate a reduction in KV-mediated currents (IKv) in VSMCs from a high fat diet (HFD) mouse model of type 2 diabetes. In particular, IKv sensitive to stromatoxin (ScTx), a potent KV2 blocker, were selectively reduced in diabetic VSMCs. This was associated with decreased KV2-mediated regulation of arterial tone and suppression of the KV2.1 subunit mRNA and protein in VSMCs/arteries isolated from HFD mice. We identified protein kinase A anchoring protein 150 (AKAP150), via targeting of the phosphatase calcineurin (CaN), and the transcription factor nuclear factor of activated T-cells c3 (NFATc3) as required determinants of KV2.1 suppression during diabetes. Interestingly, substantial reduction in transcript levels for KV2.1 preceded down-regulation of large conductance Ca(2+)-activated K(+) (BKCa) channel ß1 subunits, which are ultimately suppressed in chronic hyperglycemia to a similar extent. Together, our study supports the concept that transcriptional suppression of KV2.1 by activation of the AKAP150-CaN/NFATc3 signaling axis contributes to enhanced arterial tone during diabetes.


Asunto(s)
Arterias/fisiología , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Tono Muscular/fisiología , Canales de Potasio Shab/fisiología , Animales , Diabetes Mellitus Experimental/fisiopatología , Ratones , Ratones Endogámicos C57BL
12.
Circ Res ; 114(4): 607-15, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24323672

RESUMEN

RATIONALE: Increased contractility of arterial myocytes and enhanced vascular tone during hyperglycemia and diabetes mellitus may arise from impaired large-conductance Ca(2+)-activated K(+) (BKCa) channel function. The scaffolding protein A-kinase anchoring protein 150 (AKAP150) is a key regulator of calcineurin (CaN), a phosphatase known to modulate the expression of the regulatory BKCa ß1 subunit. Whether AKAP150 mediates BKCa channel suppression during hyperglycemia and diabetes mellitus is unknown. OBJECTIVE: To test the hypothesis that AKAP150-dependent CaN signaling mediates BKCa ß1 downregulation and impaired vascular BKCa channel function during hyperglycemia and diabetes mellitus. METHODS AND RESULTS: We found that AKAP150 is an important determinant of BKCa channel remodeling, CaN/nuclear factor of activated T-cells c3 (NFATc3) activation, and resistance artery constriction in hyperglycemic animals on high-fat diet. Genetic ablation of AKAP150 protected against these alterations, including augmented vasoconstriction. d-glucose-dependent suppression of BKCa channel ß1 subunits required Ca(2+) influx via voltage-gated L-type Ca(2+) channels and mobilization of a CaN/NFATc3 signaling pathway. Remarkably, high-fat diet mice expressing a mutant AKAP150 unable to anchor CaN resisted activation of NFATc3 and downregulation of BKCa ß1 subunits and attenuated high-fat diet-induced elevation in arterial blood pressure. CONCLUSIONS: Our results support a model whereby subcellular anchoring of CaN by AKAP150 is a key molecular determinant of vascular BKCa channel remodeling, which contributes to vasoconstriction during diabetes mellitus.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglucemia/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Vasoconstricción/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Grasas de la Dieta/farmacología , Técnicas de Sustitución del Gen , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Factores de Transcripción NFATC/metabolismo , Péptidos/farmacología , Transducción de Señal/fisiología , Toxinas Biológicas/farmacología , Vasoconstricción/efectos de los fármacos
13.
Biochim Biophys Acta ; 1833(7): 1657-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23124113

RESUMEN

Advances in imaging technology have allowed optical analysis of Ca(2+)-permeable ion channel activity. Here, we briefly review novel developments in optical recording of L-type voltage-dependent Ca(2+) channel (LTCC) function with high spatial and temporal resolution. Underlying principles supporting the use of total internal reflection fluorescence (TIRF) microscopy for optical measurement of channel activity and new functional characteristics of LTCCs revealed by application of this approach are discussed. Visualization of Ca(2+) influx through single LTCCs ("LTCC sparklets") has demonstrated that channel activity is regionally heterogeneous and that clustered channels are capable of operating in a cooperative, or "coupled" manner. In light of these findings, we describe a current molecular model for the local control of LTCC activity and coupled gating in physiological and pathological contexts. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Óptica y Fotónica , Animales , Humanos
14.
Sci Adv ; 9(21): eade7280, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235659

RESUMEN

Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.


Asunto(s)
Malformaciones Arteriovenosas , Peróxido de Hidrógeno , Óxido Nítrico Sintasa de Tipo III , Animales , Ratones , Arterias/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Nitroarginina/farmacología
15.
Commun Biol ; 6(1): 2, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596993

RESUMEN

Impairment of vascular pathways of cerebral ß-amyloid (Aß) elimination contributes to Alzheimer disease (AD). Vascular damage is commonly associated with diabetes. Here we show in human tissues and AD-model rats that bloodborne islet amyloid polypeptide (amylin) secreted from the pancreas perturbs cerebral Aß clearance. Blood amylin concentrations are higher in AD than in cognitively unaffected persons. Amyloid-forming amylin accumulates in circulating monocytes and co-deposits with Aß within the brain microvasculature, possibly involving inflammation. In rats, pancreatic expression of amyloid-forming human amylin indeed induces cerebrovascular inflammation and amylin-Aß co-deposits. LRP1-mediated Aß transport across the blood-brain barrier and Aß clearance through interstitial fluid drainage along vascular walls are impaired, as indicated by Aß deposition in perivascular spaces. At the molecular level, cerebrovascular amylin deposits alter immune and hypoxia-related brain gene expression. These converging data from humans and laboratory animals suggest that altering bloodborne amylin could potentially reduce cerebrovascular amylin deposits and Aß pathology.


Asunto(s)
Enfermedad de Alzheimer , Polipéptido Amiloide de los Islotes Pancreáticos , Humanos , Ratas , Animales , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Páncreas/metabolismo , Inflamación
17.
Front Cardiovasc Med ; 9: 913612, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845053

RESUMEN

Scientific advancement is predicated upon the ability of a novel discovery to be independently reproduced and substantiated by others. Despite this inherent necessity, the research community is awash in published studies that cannot be replicated resulting in widespread confusion within the field and waning trust from the general public. In many cases, irreproducibility is the unavoidable consequence of a study that is conducted without the appropriate degree of rigor, typified by fundamental flaws in approach, design, execution, analysis, interpretation, and reporting. Combatting the irreproducibility pandemic in preclinical research is of urgent concern and is the primary responsibility of individual investigators, however there are important roles to be played by institutions, journals, government entities, and funding agencies as well. Herein, we provide an updated review of established rigor criteria pertaining to both in vitro and in vivo studies compiled from multiple sources across the research enterprise and present a practical checklist as a straightforward reference guide. It is our hope that this review may serve as an approachable resource for early career and experienced investigators alike, as they strive to improve all aspects of their scientific endeavors.

18.
Cells ; 11(14)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883673

RESUMEN

Excitable cells of the nervous and cardiovascular systems depend on an assortment of plasmalemmal potassium channels to control diverse cellular functions. Voltage-gated potassium (Kv) channels are central to the feedback control of membrane excitability in these processes due to their activation by depolarized membrane potentials permitting K+ efflux. Accordingly, Kv currents are differentially controlled not only by numerous cellular signaling paradigms that influence channel abundance and shape voltage sensitivity, but also by heteromeric configurations of channel complexes. In this context, we discuss the current knowledge related to how intracellular Kvß proteins interacting with pore complexes of Shaker-related Kv1 channels may establish a modifiable link between excitability and metabolic state. Past studies in heterologous systems have indicated roles for Kvß proteins in regulating channel stability, trafficking, subcellular targeting, and gating. More recent works identifying potential in vivo physiologic roles are considered in light of these earlier studies and key gaps in knowledge to be addressed by future research are described.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Potasio , Membrana Celular/metabolismo , Potenciales de la Membrana/fisiología , Potasio/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo
19.
Matrix Biol ; 109: 49-69, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35346795

RESUMEN

The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.


Asunto(s)
Colágeno , Colágenos Asociados a Fibrillas , Animales , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Colágenos Asociados a Fibrillas/metabolismo , Colágenos Fibrilares/metabolismo , Mamíferos/metabolismo , Ratones , Función Ventricular
20.
Nat Commun ; 13(1): 6088, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284091

RESUMEN

E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation. We demonstrate that, similar to acrolein or combustible cigarette smoke, aerosols from e-cigarette solvents (vegetable glycerin and propylene glycol) induce bradycardia, bradyarrhythmias, and elevations in heart rate variability during inhalation exposure, with inverse post-exposure effects. These effects are slighter with tobacco- or menthol-flavored aerosols containing nicotine, and in female mice. Yet, menthol-flavored and PG aerosols also increase ventricular arrhythmias and augment early ventricular repolarization (J amplitude), while menthol uniquely alters atrial and atrioventricular conduction. Exposure to e-cigarette aerosols from vegetable glycerin and its byproduct, acrolein, diminish heart rate and early repolarization. The pro-arrhythmic effects of solvent aerosols on ventricular repolarization and heart rate variability depend partly on parasympathetic modulation, whereas ventricular arrhythmias positively associate with early repolarization dependent on the presence of nicotine. Our study indicates that chemical constituents of e-cigarettes could contribute to cardiac risk by provoking pro-arrhythmic changes and stimulating autonomic reflexes.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Animales , Femenino , Ratones , Acroleína/toxicidad , Aerosoles , Arritmias Cardíacas/inducido químicamente , Glicerol , Mentol , Nicotina , Propilenglicol , Solventes , Nicotiana , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA