Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 24(1): 1266, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394554

RESUMEN

BACKGROUND: Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS: Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS: Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION: Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.


Asunto(s)
Neoplasias Colorrectales , Mutación , Proteína p53 Supresora de Tumor , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/clasificación , Neoplasias Colorrectales/patología , Rwanda , Masculino , Femenino , Persona de Mediana Edad , Anciano , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano de 80 o más Años , Biomarcadores de Tumor/genética
2.
Genes Environ ; 46(1): 8, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459566

RESUMEN

BACKGROUND: Gastric cancer is the sixth most frequently diagnosed cancer and third in causing cancer-related death globally. The most frequently mutated gene in human cancers is TP53, which plays a pivotal role in cancer initiation and progression. In Africa, particularly in Rwanda, data on TP53 mutations are lacking. Therefore, this study intended to obtain TP53 mutation status in Rwandan patients with gastric cancer. RESULTS: Formalin-fixed paraffin-embedded tissue blocks of 95 Rwandan patients with histopathologically proven gastric carcinoma were obtained from the University Teaching Hospital of Kigali. After DNA extraction, all coding regions of the TP53 gene and the exon-intron boundary region of TP53 were sequenced using the Sanger sequencing. Mutated TP53 were observed in 24 (25.3%) of the 95 cases, and a total of 29 mutations were identified. These TP53 mutations were distributed between exon 4 and 8 and most of them were missense mutations (19/29; 65.5%). Immunohistochemical analysis for TP53 revealed that most of the TP53 missense mutations were associated with TP53 protein accumulation. Among the 29 mutations, one was novel (c.459_477delCGGCACCCGCGTCCGCGCC). This 19-bp deletion mutation in exon 5 caused the production of truncated TP53 protein (p.G154Wfs*10). Regarding the spectrum of TP53 mutations, G:C > A:T at CpG sites was the most prevalent (10/29; 34.5%) and G:C > T:A was the second most prevalent (7/29; 24.1%). Interestingly, when the mutation spectrum of TP53 was compared to three previous TP53 mutational studies on non-Rwandan patients with gastric cancer, G:C > T:A mutations were significantly more frequent in this study than in our previous study (p = 0.013), the TCGA database (p = 0.017), and a previous study on patients from Hong Kong (p = 0.006). Even after correcting for false discovery, statistical significance was observed. CONCLUSIONS: Our results suggested that TP53 G:C > T:A transversion mutation in Rwandan patients with gastric cancer is more frequent than in non-Rwandan patients with gastric cancer, indicating at an alternative etiological and carcinogenic progression of gastric cancer in Rwanda.

3.
Genes Environ ; 45(1): 20, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37391803

RESUMEN

BACKGROUND: Colorectal cancer (CRC) has been ranked as the second most deadly cancer and the third most diagnosed cancer cases for the year 2020. Specifically for Romania, the number of CRC-related deaths in 2019 was estimated at 6307 people, with a standardized mortality rate of 33.8 per 100,000 inhabitants. Although the tumor protein 53 (TP53) gene is intensively studied, there are few data on TP53 mutations in Romanian CRC. Furthermore, since genetic alterations may show geographical differences, our study aimed to analyze the clinical status and TP53 somatic variation in Romanian CRC patients. SUBJECTS AND METHODS: DNA from 40 randomly selected cases of CRC was extracted from formalin-fixed paraffin-embedded tissues and sequenced using direct Sanger sequencing techniques, and variants were annotated according to the recommendations of the Human Genome Variation Society. Novel variants were analyzed using MutationTaster2021 to predict their effects. RESULTS: The mean age was 63.6 years (range 33-85 years) with a male to female ratio of 2.3. More than 45% (18/40) had an advanced cancer stage (≥ stage III). Mutations were found in 21/40 cases (52.5%), with one case having two mutations, giving a total of twenty-two mutations in the TP53 coding DNA. These mutations include 3 (13.6%) insertion-deletion mutations, two of which are novel frameshift mutations: c.165delT (in exon 4) and c.928_935dup (in exon 9), both of which are predicted to lead to nonsense-mediated mRNA decay and are classified as deleterious. The remaining 19 (86.36%) were substitution mutations: 1 nonsense and 18 (81.8%) missense mutations, with G > A (n = 7/19; 36.8%) and C > T (n = 6/19; 31.5%) transitions being the most common. The G > T transversion was found in 21.05% (4/19) of the substitution mutations. CONCLUSION: We have described two novel frameshift mutations in TP53. The discovery of novel mutations following the efforts of The Cancer Genome Atlas and other large-scale cancer genome sequencing projects may be further evidence of the heterogeneous nature of mutations in cancer and may indicate that the identification of carcinogenic mutations is not yet saturated. Further sequencing is therefore needed, especially in less studied populations. Importantly, consideration of their geographical environment will shed light on population-specific carcinogenesis.

4.
Genes Environ ; 45(1): 1, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600315

RESUMEN

AIM: Mutation spectrum of TP53 in gastric cancer (GC) has been investigated world-widely, but a comparison of mutation spectrum among GCs from various regions in the world are still sparsely documented. In order to identify the difference of TP53 mutation spectrum in GCs in Eastern Europe and in East Asia, we sequenced TP53 in GCs from Eastern Europe, Lujiang (China), and Yokohama, Kanagawa (Japan) and identified the feature of TP53 mutations of GC in these regions. SUBJECTS AND METHOD: In total, 689 tissue samples of GC were analyzed: 288 samples from East European populations (25 from Hungary, 71 from Poland and 192 from Romania), 268 from Yokohama, Kanagawa, Japan and 133 from Lujiang, Anhui province, China. DNA was extracted from FFPE tissue of Chinese, East European cases; and from frozen tissue of Japanese GCs. PCR products were direct-sequenced by Sanger method, and in ambiguous cases, PCR product was cloned and up to 8 clones were sequenced. We used No. NC_000017.11(hg38) as the reference sequence of TP53. Mutation patterns were categorized into nine groups: six base substitutions, insertion, deletion and deletion-insertion. Within G:C > A:T mutations the mutations in CpG and non-CpG sites were divided. The Cancer Genome Atlas data (TCGA, ver.R20, July, 2019) having somatic mutation list of GCs from Whites, Asians, and other ethnicities were used as a reference for our data. RESULTS: The most frequent base substitutions were G:C > A:T transition in all the areas investigated. The G:C > A:T transition in non-CpG sites were prominent in East European GCs, compared with Asian ones. Mutation pattern from TCGA data revealed the same trend between GCs from White (TCGA category) vs Asian countries. Chinese and Japanese GCs showed higher ratio of G:C > A:T transition in CpG sites and A:T > G:C mutation was more prevalent in Asian countries. CONCLUSION: The divergence in mutation spectrum of GC in different areas in the world may reflect various pathogeneses and etiologies of GC, region to region. Diversified mutation spectrum in GC in Eastern Europe may suggest GC in Europe has different carcinogenic pathway of those from Asia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA