RESUMEN
Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell-directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module. Here we review how distinct lineages of tissue-resident innate lymphoid cells, innate-like T cells, and adaptive T cells participate in a form of multilayered cancer immunity in murine models and patients, and how their convergent effector programs may be targeted through both shared and private regulatory pathways for cancer immunotherapy.
Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Animales , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos/inmunología , Linfocitos/metabolismo , Microambiente Tumoral/inmunología , Inmunidad Adaptativa , Inmunoterapia/métodosRESUMEN
A striking change has happened in the field of immunology whereby specific metabolic processes have been shown to be a critical determinant of immune cell activation. Multiple immune receptor types rewire metabolic pathways as a key part of how they promote effector functions. Perhaps surprisingly for immunologists, the Krebs cycle has emerged as the central immunometabolic hub of the macrophage. During proinflammatory macrophage activation, there is an accumulation of the Krebs cycle intermediates succinate and citrate, and the Krebs cycle-derived metabolite itaconate. These metabolites have distinct nonmetabolic signaling roles that influence inflammatory gene expression. A key bioenergetic target for the Krebs cycle, the electron transport chain, also becomes altered, generating reactive oxygen species from Complexes I and III. Similarly, alternatively activated macrophages require α-ketoglutarate-dependent epigenetic reprogramming to elicit anti-inflammatory gene expression. In this review, we discuss these advances and speculate on the possibility of targeting these events therapeutically for inflammatory diseases.
Asunto(s)
Ciclo del Ácido Cítrico , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Inmunomodulación , Activación de Macrófagos/inmunología , Transducción de SeñalRESUMEN
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Asunto(s)
Epitelio/fisiología , Helmintiasis/inmunología , Helmintos/fisiología , Factores de Transcripción de Octámeros/metabolismo , Células Receptoras Sensoriales/fisiología , Células Th2/inmunología , Animales , Humanos , Sistema Inmunológico , Interleucina-17/metabolismo , Sistema Nervioso , Neuroinmunomodulación , Factores de Transcripción de Octámeros/genética , Transducción de Señal , Canales Catiónicos TRPM/metabolismoRESUMEN
Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.
Asunto(s)
Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas , Ligandos , Descubrimiento de Drogas/métodos , Humanos , Proteínas/química , Proteínas/metabolismo , Aprendizaje Automático , Sitios de Unión , Diseño de FármacosRESUMEN
Dolichol is a lipid that is involved in protein glycosylation, a process that is essential for all eukaryotic life. In this issue of Cell, Wilson and coworkers1 report how a rare human genetic disorder led to the discovery of dolichol biosynthesis.
Asunto(s)
Dolicoles , Humanos , Dolicoles/metabolismo , Dolicoles/biosíntesis , GlicosilaciónRESUMEN
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Asunto(s)
Inmunidad Innata , Humanos , Animales , Historia del Siglo XX , Historia del Siglo XXI , Inmunidad Adaptativa , Alergia e Inmunología/historiaRESUMEN
Dramatic progress in treating childhood cancer has evolved over decades from initial empirically derived treatments to clinical investigations incorporating disease biology with rationally designed therapeutic programs. While cure is now possible for many, it remains elusive for others. Collaboration across numerous domains is necessary for cure to be a reality for all.
Asunto(s)
Neoplasias , Humanos , Niño , Neoplasias/genética , Neoplasias/terapiaRESUMEN
Mounting evidence suggests metabolism instructs stem cell fate decisions. However, how fetal metabolism changes during development and how altered maternal metabolism shapes fetal metabolism remain unexplored. We present a descriptive atlas of in vivo fetal murine metabolism during mid-to-late gestation in normal and diabetic pregnancy. Using 13C-glucose and liquid chromatography-mass spectrometry (LC-MS), we profiled the metabolism of fetal brains, hearts, livers, and placentas harvested from pregnant dams between embryonic days (E)10.5 and 18.5. Our analysis revealed metabolic features specific to a hyperglycemic environment and signatures that may denote developmental transitions during euglycemic development. We observed sorbitol accumulation in fetal tissues and altered neurotransmitter levels in fetal brains isolated from hyperglycemic dams. Tracing 13C-glucose revealed disparate fetal nutrient sourcing depending on maternal glycemic states. Regardless of glycemic state, histidine-derived metabolites accumulated in late-stage fetal tissues. Our rich dataset presents a comprehensive overview of in vivo fetal tissue metabolism and alterations due to maternal hyperglycemia.
Asunto(s)
Diabetes Mellitus , Diabetes Gestacional , Feto , Animales , Femenino , Ratones , Embarazo , Diabetes Mellitus/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Placenta/metabolismo , Diabetes Gestacional/metabolismoRESUMEN
Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.
Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Microbiota , Humanos , Animales , Ratones , Antibacterianos/farmacología , Microbiota/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Metagenoma , Femenino , Sistemas de Lectura Abierta , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Prevotella/efectos de los fármacosRESUMEN
In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.
Asunto(s)
Proteínas de Ciclo Celular , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Metiltransferasas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ARN de Hongos/genética , ARN Interferente Pequeño/genéticaRESUMEN
Sharing genetic and other study results with the communities who participate in research falls under benefit-sharing and capacity-building initiatives that underpin a more equitable biomedical research relationship. Yet, which results to return and how remain fundamental challenges that persist in the absence of practical guidance and institutional policies. Here, we discuss how the return of results can be implemented across different geographies, study designs, and project budgets.
Asunto(s)
Genómica , Difusión de la Información , Humanos , Investigación Biomédica , Estados UnidosRESUMEN
Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the cellular dynamics of MS by modeling temporal and regional rates of disease progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing single-cell spatial expression profiling using in situ sequencing (ISS), we annotated disease neighborhoods and found centrifugal evolution of active lesions. We demonstrated that disease-associated (DA)-glia arise independently of lesions and are dynamically induced and resolved over the disease course. Single-cell spatial mapping of human archival MS spinal cords confirmed the differential distribution of homeostatic and DA-glia, enabled deconvolution of active and inactive lesions into sub-compartments, and identified new lesion areas. By establishing a spatial resource of mouse and human MS neuropathology at a single-cell resolution, our study unveils the intricate cellular dynamics underlying MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Médula Espinal , Animales , Humanos , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Ratones , Análisis de Expresión Génica de una Sola Célula , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Neuroglía/metabolismo , Neuroglía/patologíaRESUMEN
Xp11 translocation renal cell carcinoma (tRCC) is a rare, female-predominant cancer driven by a fusion between the transcription factor binding to IGHM enhancer 3 (TFE3) gene on chromosome Xp11.2 and a partner gene on either chromosome X (chrX) or an autosome. It remains unknown what types of rearrangements underlie TFE3 fusions, whether fusions can arise from both the active (chrXa) and inactive X (chrXi) chromosomes, and whether TFE3 fusions from chrXi translocations account for the female predominance of tRCC. To address these questions, we performed haplotype-specific analyses of chrX rearrangements in tRCC whole genomes. We show that TFE3 fusions universally arise as reciprocal translocations and that oncogenic TFE3 fusions can arise from chrXi:autosomal translocations. Female-specific chrXi:autosomal translocations result in a 2:1 female-to-male ratio of TFE3 fusions involving autosomal partner genes and account for the female predominance of tRCC. Our results highlight how X chromosome genetics constrains somatic chrX alterations and underlies cancer sex differences.
Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Carcinoma de Células Renales , Cromosomas Humanos X , Neoplasias Renales , Translocación Genética , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Femenino , Translocación Genética/genética , Cromosomas Humanos X/genética , Masculino , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Proteínas de Fusión Oncogénica/genética , Caracteres Sexuales , Haplotipos/genéticaRESUMEN
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
RESUMEN
More globally diverse perspectives are needed in genomic studies and precision medicine practices on non-Europeans. Here, we illustrate this by discussing the distribution of clinically actionable genetic variants involved in drug response in Andean highlanders and Amazonians, considering their environment, history, genetic structure, and historical biases in the perception of biological diversity of Native Americans.
Asunto(s)
Genómica , Humanos , Variación Genética , Indígenas Sudamericanos/genética , Genoma Humano , América del Sur , Medicina de PrecisiónRESUMEN
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Asunto(s)
Microbiota , Factores Sociales , Simbiosis , Animales , Humanos , Enfermedades no Transmisibles , VirulenciaRESUMEN
Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Seafood Wholesale Market. Here, we analyze environmental qPCR and sequencing data collected in the Huanan market in early 2020. We demonstrate that market-linked severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity is consistent with market emergence and find increased SARS-CoV-2 positivity near and within a wildlife stall. We identify wildlife DNA in all SARS-CoV-2-positive samples from this stall, including species such as civets, bamboo rats, and raccoon dogs, previously identified as possible intermediate hosts. We also detect animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them with those from farms and other markets. This analysis provides the genetic basis for a shortlist of potential intermediate hosts of SARS-CoV-2 to prioritize for serological and viral sampling.
Asunto(s)
Animales Salvajes , COVID-19 , Filogenia , SARS-CoV-2 , Animales , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Animales Salvajes/virología , Humanos , PandemiasRESUMEN
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Asunto(s)
Ácidos Grasos , Lactobacillus , Vagina , Vaginosis Bacteriana , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Femenino , Humanos , Vagina/microbiología , Lactobacillus/metabolismo , Ácidos Grasos/metabolismo , Ácido Oléico/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Lactobacillus crispatus/metabolismo , Microbiota/efectos de los fármacos , Proteínas Bacterianas/metabolismoRESUMEN
Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigenómica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Análisis de la Célula Individual , Microambiente Tumoral , Heterogeneidad GenéticaRESUMEN
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.