Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Reprod Biol Endocrinol ; 17(1): 70, 2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31445519

RESUMEN

BACKGROUND: Endometriosis is the growth of uterine lining (endometrium) outside of the uterus. In other chronic inflammatory diseases, mitochondrial dysfunction is suspected of playing a role in disease pathogenesis. However, little is known about endometriosis mitochondrial function or its effects on tissue metabolism. The objectives of this study were to analyze mitochondrial function in nonhuman primate (NHP) endometrium and endometriosis tissue and to identify the metabolic features of these tissues that may contribute to disease. METHODS: Mitochondrial function in endometriosis tissue and endometrium was measured using mitochondrial respirometry analysis to determine if changes in oxidative phosphorylation exist in endometrium and endometriosis tissue compared to control endometrium from clinically healthy NHPs. Targeted metabolomics and multidimensional statistical analysis were applied to quantify key metabolites in energy and amino acid biosynthesis pathways. RESULTS: Mitochondrial respirometry assays showed endometrium from NHPs with endometriosis had reduced complex II-mediated oxygen consumption rates (OCR) across all energy states (basal, p = 0.01; state 3, p = 0.02; state 3u, p = 0.04; state 4o, p = 0.008) and endometriosis tissue had reduced state 3, complex I-mediated OCR (p = 0.02) and respiratory control rates (p = 0.01) compared to normal endometrium. Targeted metabolomics performed on tissue revealed carnitine (p = 0.001), creatine phosphate (p = 0.01), NADH (p = 0.0001), FAD (p = 0.001), tryptophan (p = 0.0009), and malic acid (p = 0.005) were decreased in endometriosis tissue compared to normal endometrium samples. FAD (p = 0.004), tryptophan (p = 0.0004) and malic acid (p = 0.03) were significantly decreased in endometrium from NHPs with endometriosis compared to normal endometrium. Significant metabolites identified in endometriosis and endometrium samples from animals with endometriosis were part of amino acid biosynthesis or energy metabolism pathways. CONCLUSIONS: Here, endometrial mitochondrial energy production and metabolism were decreased in endometrium and endometriosis tissue. Decreased mitochondrial energy production may be due to oxidative stress-induced damage to mitochondrial DNA or membranes, a shift in cell metabolism, or decreased energy substrate; however, the exact cause remains unknown. Additional research is needed to determine the implications of reduced mitochondrial energy production and metabolism on endometriosis and endometrium.


Asunto(s)
Endometriosis/metabolismo , Endometrio/metabolismo , Metabolismo Energético , Macaca fascicularis/metabolismo , Macaca mulatta/metabolismo , Mitocondrias/metabolismo , Animales , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Endometriosis/patología , Femenino , Humanos , Primates/clasificación , Primates/metabolismo , Especificidad de la Especie
2.
Front Oncol ; 12: 939118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110959

RESUMEN

Translational Relevance: Evaluation of targeted therapies is urgently needed for the majority of patients with metastatic/recurrent head and neck squamous cell carcinoma (HNSCC) who progress after immunochemotherapy. Erlotinib, a targeted inhibitor of epidermal growth factor receptor pathway, lacks FDA approval in HNSCC due to inadequate tumor response. This study identifies two potential avenues to improve tumor response to erlotinib among patients with HNSCC. For the first time, this study shows that an increased erlotinib dose of 300 mg in smokers is well-tolerated and produces similar plasma drug concentration as the regular dose of 150 mg in non-smokers, with increased study-specific defined tumor response. The study also highlights the opportunity for improved patient selection for erlotinib treatment by demonstrating that early in-treatment [18]FDG PET/CT is a potential predictor of tumor response, with robust statistical correlations between metabolic changes on early in-treatment PET (4-7 days through treatment) and anatomic response measured by end-of-treatment CT. Purpose: Patients with advanced HNSCC failing immunochemotherapy have no standard treatment options. Accelerating the investigation of targeted drug therapies is imperative. Treatment with erlotinib produced low response rates in HNSCC. This study investigates the possibility of improved treatment response through patient smoking status-based erlotinib dose optimization, and through early in-treatment [18]FDG PET evaluation to differentiate responders from non-responders. Experimental design: In this window-of-opportunity study, patients with operable HNSCC received neoadjuvant erlotinib with dose determined by smoking status: 150 mg (E150) for non-smokers and 300 mg (E300) for active smokers. Plasma erlotinib levels were measured using mass spectrometry. Patients underwent PET/CT before treatment, between days 4-7 of treatment, and before surgery (post-treatment). Response was measured by diagnostic CT and was defined as decrease in maximum tumor diameter by ≥ 20% (responders), 10-19% (minimum-responders), and < 10% (non-responders). Results: Nineteen patients completed treatment, ten of whom were smokers. There were eleven responders, five minimum-responders, and three non-responders. Tumor response and plasma erlotinib levels were similar between the E150 and E300 patient groups. The percentage change on early PET/CT and post-treatment PET/CT compared to pre-treatment PET/CT were significantly correlated with the radiologic response on post-treatment CTs: R=0.63, p=0.0041 and R=0.71, p=0.00094, respectively. Conclusion: This pilot study suggests that early in-treatment PET/CT can predict response to erlotinib, and treatment with erlotinib dose adjusted according to smoking status is well-tolerated and may improve treatment response in HNSCC. These findings could help optimize erlotinib treatment in HNSCC and should be further investigated. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00601913, identifier NCT00601913.

3.
Nat Commun ; 12(1): 6091, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667203

RESUMEN

Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells.


Asunto(s)
Guanosina Trifosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Guanosina Trifosfato/química , Células HEK293 , Humanos , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Cinética , Unión Proteica , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rac1/genética
4.
Nutrients ; 12(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086512

RESUMEN

Inter-individual response to dietary interventions remains a major challenge to successful weight loss among older adults. This study applied metabolomics technology to identify small molecule signatures associated with a loss of fat mass and overall weight in a cohort of older adults on a nutritionally complete, high-protein diet. A total of 102 unique metabolites were measured using liquid chromatography-mass spectrometry (LC-MS) for 38 adults aged 65-80 years randomized to dietary intervention and 36 controls. Metabolite values were analyzed in both baseline plasma samples and samples collected following the six-month dietary intervention to consider both metabolites that could predict the response to diet and those that changed in response to diet or weight loss.Eight metabolites changed over the intervention at a nominally significant level: D-pantothenic acid, L-methionine, nicotinate, aniline, melatonin, deoxycarnitine, 6-deoxy-L-galactose, and 10-hydroxydecanoate. Within the intervention group, there was broad variation in the achieved weight-loss and dual-energy x-ray absorptiometry (DXA)-defined changes in total fat and visceral adipose tissue (VAT) mass. Change in the VAT mass was significantly associated with the baseline abundance of α-aminoadipate (p = 0.0007) and an additional mass spectrometry peak that may represent D-fructose, myo-inositol, mannose, α-D-glucose, allose, D-galactose, D-tagatose, or L-sorbose (p = 0.0001). This hypothesis-generating study reflects the potential of metabolomic biomarkers for the development of personalized dietary interventions.


Asunto(s)
Tejido Adiposo/metabolismo , Adiposidad , Dieta Reductora , Fenómenos Fisiológicos Nutricionales del Anciano/fisiología , Pérdida de Peso , Factores de Edad , Anciano , Anciano de 80 o más Años , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Dieta Reductora/métodos , Femenino , Humanos , Masculino , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA