Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 18(12): e3001030, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320856

RESUMEN

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Prueba de COVID-19/economía , Humanos , Reacción en Cadena de la Polimerasa Multiplex/economía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/economía , SARS-CoV-2/genética
2.
Bioinformatics ; 34(9): 1600-1602, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069305

RESUMEN

Summary: heatmaply is an R package for easily creating interactive cluster heatmaps that can be shared online as a stand-alone HTML file. Interactivity includes a tooltip display of values when hovering over cells, as well as the ability to zoom in to specific sections of the figure from the data matrix, the side dendrograms, or annotated labels. Thanks to the synergistic relationship between heatmaply and other R packages, the user is empowered by a refined control over the statistical and visual aspects of the heatmap layout. Availability and implementation: The heatmaply package is available under the GPL-2 Open Source license. It comes with a detailed vignette, and is freely available from: http://cran.r-project.org/package=heatmaply. Contact: tal.galili@math.tau.ac.il. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Edición
3.
NPJ Precis Oncol ; 8(1): 9, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200147

RESUMEN

Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology.

4.
F1000Res ; 11: 59, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38779464

RESUMEN

Cell-to-cell gene expression variability is an inherent feature of complex biological systems, such as immunity and development. Single-cell RNA sequencing is a powerful tool to quantify this heterogeneity, but it is prone to strong technical noise. In this article, we describe a step-by-step computational workflow that uses the BASiCS Bioconductor package to robustly quantify expression variability within and between known groups of cells (such as experimental conditions or cell types). BASiCS uses an integrated framework for data normalisation, technical noise quantification and downstream analyses, propagating statistical uncertainty across these steps. Within a single seemingly homogeneous cell population, BASiCS can identify highly variable genes that exhibit strong heterogeneity as well as lowly variable genes with stable expression. BASiCS also uses a probabilistic decision rule to identify changes in expression variability between cell populations, whilst avoiding confounding effects related to differences in technical noise or in overall abundance. Using a publicly available dataset, we guide users through a complete pipeline that includes preliminary steps for quality control, as well as data exploration using the scater and scran Bioconductor packages. The workflow is accompanied by a Docker image that ensures the reproducibility of our results.

5.
Sci Rep ; 12(1): 13609, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948568

RESUMEN

Colorectal cancer (CRC) is characterised by heritable risk that is not well understood. Heritable, genetic variation at 11q23.1 is associated with increased colorectal cancer (CRC) risk, demonstrating eQTL effects on 3 cis- and 23 trans-eQTL targets. We sought to determine the relationship between 11q23.1 cis- and trans-eQTL target expression and test for potential cell-specificity. scRNAseq from 32,361 healthy colonic epithelial cells was aggregated and subject to weighted gene co-expression network analysis (WGCNA). One module (blue) included 19 trans-eQTL targets and was correlated with POU2AF2 expression only. Following unsupervised clustering of single cells, the expression of 19 trans-eQTL targets was greatest and most variable in cluster number 11, which transcriptionally resembled tuft cells. 14 trans-eQTL targets were found to demarcate this cluster, 11 of which were corroborated in a second dataset. Intra-cluster WGCNA and module preservation analysis then identified twelve 11q23.1 trans-eQTL targets to comprise a network that was specific to cluster 11. Finally, linear modelling and differential abundance testing showed 11q23.1 trans-eQTL target expression was predictive of cluster 11 abundance. Our findings suggest 11q23.1 trans-eQTL targets comprise a POU2AF2-related network that is likely tuft cell-specific and reduced expression of these genes correlates with reduced tuft cell abundance in silico.


Asunto(s)
Neoplasias Colorrectales , Sitios de Carácter Cuantitativo , Análisis por Conglomerados , Neoplasias Colorrectales/genética , Humanos
6.
PLoS One ; 13(2): e0192746, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447208

RESUMEN

Glucocorticoids are potent inhibitors of angiogenesis in the rodent in vivo and in vitro but the mechanism by which this occurs has not been determined. Administration of glucocorticoids is used to treat a number of conditions in horses but the angiogenic response of equine vessels to glucocorticoids and, therefore, the potential role of glucocorticoids in pathogenesis and treatment of equine disease, is unknown. This study addressed the hypothesis that glucocorticoids would be angiostatic both in equine and murine blood vessels.The mouse aortic ring model of angiogenesis was adapted to assess the effects of cortisol in equine vessels. Vessel rings were cultured under basal conditions or exposed to: foetal bovine serum (FBS; 3%); cortisol (600 nM), cortisol (600nM) plus FBS (3%), cortisol (600nM) plus either the glucocorticoid receptor antagonist RU486 or the mineralocorticoid receptor antagonist spironolactone. In murine aortae cortisol inhibited and FBS stimulated new vessel growth. In contrast, in equine blood vessels FBS alone had no effect but cortisol alone, or in combination with FBS, dramatically increased new vessel growth compared with controls. This effect was blocked by glucocorticoid receptor antagonism but not by mineralocorticoid antagonism. The transcriptomes of murine and equine angiogenesis demonstrated cortisol-induced down-regulation of inflammatory pathways in both species but up-regulation of pro-angiogenic pathways selectively in the horse. Genes up-regulated in the horse and down-regulated in mice were associated with the extracellular matrix. These data call into question our understanding of glucocorticoids as angiostatic in every species and may be of clinical relevance in the horse.


Asunto(s)
Enfermedades de los Caballos/fisiopatología , Hidrocortisona/farmacología , Inflamación/metabolismo , Neovascularización Patológica/prevención & control , Inhibidores de la Angiogénesis , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Mifepristona/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA