Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Trends Genet ; 38(7): 650-661, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35469708

RESUMEN

Long life requires individuals to defend themselves against pathogens over prolonged periods of time whilst minimising damage to themselves. In vertebrates, pathogen defence is provided by two integrated systems, innate and adaptive immunity. Innate immunity is relatively nonspecific, resulting in collateral damage to hosts, and does not involve canonical immunological memory. In contrast, adaptive immunity is highly specific and confers long-lasting memory, which are features that are predicted to facilitate long life. However, there is long-standing debate over the general importance of adaptive immunity for the evolution of extended lifespans, partly because this is difficult to test. We highlight how recent improvements in whole genome assemblies open the door to immunogenomic comparative analyses that enable the coevolution of longevity and specific immune traits to be disentangled.


Asunto(s)
Inmunidad Adaptativa , Longevidad , Inmunidad Adaptativa/genética , Animales , Genómica , Humanos , Inmunidad Innata/genética , Longevidad/genética , Vertebrados
2.
J Evol Biol ; 36(6): 847-873, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37255207

RESUMEN

Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.


Asunto(s)
Inmunidad Adaptativa , Evolución Biológica , Animales , Inmunidad Adaptativa/genética , Vertebrados/genética , Evolución Molecular , Inmunidad Innata/genética
3.
Proc Biol Sci ; 287(1919): 20192675, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992169

RESUMEN

Pathogen communities can vary substantially between geographical regions due to different environmental conditions. However, little is known about how host immune systems respond to environmental variation across macro-ecological and evolutionary scales. Here, we select 37 species of songbird that inhabit diverse environments, including African and Palaearctic residents and Afro-Palaearctic migrants, to address how climate and habitat have influenced the evolution of key immune genes, the major histocompatibility complex class I (MHC-I). Resident species living in wetter regions, especially in Africa, had higher MHC-I diversity than species living in drier regions, irrespective of the habitats they occupy. By contrast, no relationship was found between MHC-I diversity and precipitation in migrants. Our results suggest that the immune system of birds has evolved greater pathogen recognition in wetter tropical regions. Furthermore, evolving transcontinental migration appears to have enabled species to escape wet, pathogen-rich areas at key periods of the year, relaxing selection for diversity in immune genes and potentially reducing immune system costs.


Asunto(s)
Variación Genética , Selección Genética , Pájaros Cantores/genética , Migración Animal , Animales , Clima , Ecosistema
4.
Evolution ; 75(5): 1061-1069, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666228

RESUMEN

To survive organisms must defend themselves against pathogens. Classical Major Histocompatibility Complex (MHC) genes play a key role in pathogen defense by encoding molecules involved in pathogen recognition. MHC gene diversity influences the variety of pathogens individuals can recognize and respond to and has consequently been a popular genetic marker for disease resistance in ecology and evolution. However, MHC diversity is predominantly estimated using genomic DNA (gDNA) with little knowledge of expressed diversity. This limits our ability to interpret the adaptive significance of variation in MHC diversity, especially in species with very many MHC genes such as songbirds. Here, we address this issue using phylogenetic comparative analyses of the number of MHC class I alleles (MHC-I diversity) in gDNA and complementary DNA (cDNA), that is, expressed alleles, across 13 songbird species. We propose three theoretical relationships that could be expected between genomic and expressed MHC-I diversity on a macroevolutionary scale and test which of these are best supported. In doing so, we show that significantly fewer MHC-I alleles than the number available are expressed, suggesting that optimal MHC-I diversity could be achieved by modulating gene expression. Understanding the relationship between genomic and expressed MHC diversity is essential for interpreting variation in MHC diversity in an evolutionary context.


Asunto(s)
Expresión Génica , Complejo Mayor de Histocompatibilidad/genética , Pájaros Cantores/genética , Animales , ADN Complementario , Evolución Molecular , Genoma , Filogenia , Pájaros Cantores/inmunología
5.
Elife ; 102021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34309511

RESUMEN

Living with relatives can be highly beneficial, enhancing reproduction and survival. High relatedness can, however, increase susceptibility to pathogens. Here, we examine whether the benefits of living with relatives offset the harm caused by pathogens, and if this depends on whether species typically live with kin. Using comparative meta-analysis of plants, animals, and a bacterium (nspecies = 56), we show that high within-group relatedness increases mortality when pathogens are present. In contrast, mortality decreased with relatedness when pathogens were rare, particularly in species that live with kin. Furthermore, across groups variation in mortality was lower when relatedness was high, but abundances of pathogens were more variable. The effects of within-group relatedness were only evident when pathogens were experimentally manipulated, suggesting that the harm caused by pathogens is masked by the benefits of living with relatives in nature. These results highlight the importance of kin selection for understanding disease spread in natural populations.


Living in a group with relatives has many advantages, such as helping with child rearing and gathering food. This has led many species to evolve a range of group behaviours; for example, in honey bee populations, worker bees sacrifice themselves to save the colony from incoming enemies. But there are also downsides to living with family. For example, bacteria, viruses and other disease-causing pathogens will find it easier to spread between relatives. This is because individuals with the same genes have similar immune defences. So, is it better to live with relatives who can help with life's struggles or live with unrelated individuals where there is a lower chance of getting sick? To help answer this question, Bensch et al. analysed data from 75 studies which encompassed 56 different species of plants, animals, and one type of bacteria. This showed that creatures living in family groups experienced more disease and had a higher risk of death. However, if groups had a low chance of encountering pathogens, individuals living with relatives were more likely to survive. This cancels out the disadvantages family groups face when pathogens are more common. The analysis by Bensch et al. provides new insights into how pathogens spread in species with different social systems. This information can be used to predict how diseases occur in nature which will benefit ecologists, epidemiologists, and conservation biologists.


Asunto(s)
Conducta Animal , Variación Genética , Conducta Social , Animales , Ecología , Repeticiones de Microsatélite , Filogenia , Reproducción , Sobrevida
6.
Proc Biol Sci ; 276(1672): 3467-75, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19586951

RESUMEN

An important predictor of male fitness is the fertilizing efficiency of their ejaculates. Ejaculates are costly to produce and males are predicted to devote greater resources to copulations with reproductively superior females. It is well established that males allocate different numbers of sperm to ejaculates. However, less is known about how males adjust their sperm quality, which has important implications for our understanding of fertilization and the evolution of sexual strategies. Here we test in the fowl, Gallus gallus, whether males adjust their sperm velocity by differentially allocating seminal fluid to copulations with attractive and unattractive females. To disentangle the contributions of sperm and seminal fluid to sperm velocity, we separated and remixed sperm and seminal fluid from ejaculates allocated to females of different attractiveness. We show that dominant males increase the velocity of the sperm they invest in more attractive females by allocating larger ejaculates that contain seminal fluid that increases sperm velocity. Furthermore, we find weak evidence that males also allocate sperm with higher velocity, irrespective of seminal fluid, to more attractive females.


Asunto(s)
Líquidos Corporales/fisiología , Pollos/fisiología , Conducta Sexual Animal/fisiología , Espermatozoides/fisiología , Animales , Pollos/anatomía & histología , Cresta y Barbas/anatomía & histología , Femenino , Masculino , Predominio Social
7.
Cells ; 8(10)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561531

RESUMEN

Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.


Asunto(s)
Aves/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Complejo Mayor de Histocompatibilidad , Animales , Aves/genética , Evolución Molecular , Variación Genética , Humanos , Análisis de Secuencia de ADN
8.
PeerJ ; 7: e8013, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31720122

RESUMEN

Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales. In this perspective we aim to highlight some of the commonalities and complexities across diverse studies of host-pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of genomic methods used. We performed a quantitative review of recent literature to investigate links, patterns and potential tradeoffs between the complexity of genomic, ecological and spatiotemporal scales undertaken in individual host-pathogen studies. We found that the majority of studies used whole genome resolution to address their research objectives across a broad range of ecological scales, especially when focusing on the pathogen side of the interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are currently rare in the literature. Because processes of host-pathogen interactions can be understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen systems is that data are collected on widely diverging scales with different degrees of resolution. This disparity not only hampers effective infrastructural organization of the data but also data granularity and accessibility. Comprehensive metadata deposited in association with genomic data in easily accessible databases will allow greater inference across systems in the future, especially when combined with open data standards and practices. The standardization and comparability of such data will facilitate early detection of emerging infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate change, on disease dynamics in humans and wildlife.

9.
Nat Ecol Evol ; 2(5): 841-849, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632357

RESUMEN

Colonization and migration have a crucial effect on patterns of biodiversity, with disease predicted to play an important role in these processes. However, evidence of the effect of pathogens on broad patterns of colonization and migration is limited. Here, using phylogenetic analyses of 1,311 species of Afro-Palaearctic songbirds, we show that colonization events from regions of high (sub-Saharan Africa) to low (the Palaearctic) pathogen diversity were up to 20 times more frequent than the reverse, and that migration has evolved 3 times more frequently from African- as opposed to Palaearctic-resident species. We also found that resident species that colonized the Palaearctic from Africa, as well as African species that evolved long-distance migration to breed in the Palaearctic, have reduced diversity of key immune genes associated with pathogen recognition (major histocompatibility complex class I). These results suggest that changes in the pathogen community that occur during colonization and migration shape the evolution of the immune system, potentially by adjusting the trade-off between the benefits of extensive pathogen recognition and the costs of immunopathology that result from high major histocompatibility complex class I diversity.


Asunto(s)
Distribución Animal , Migración Animal , Evolución Molecular , Complejo Mayor de Histocompatibilidad , Pájaros Cantores/fisiología , África del Sur del Sahara , Animales , Europa (Continente) , Filogenia , Análisis de Secuencia de ADN , Pájaros Cantores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA