Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cancer Cell Int ; 15(1): 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25685067

RESUMEN

BACKGROUND: Cells with homologous recombination (HR) deficiency, most notably caused by mutations in the BRCA1 or BRCA2 genes, are sensitive to PARP inhibition. Microsatellite instability (MSI) accounts for 10-15% of colorectal cancer (CRC) and is hypothesized to lead to HR defects due to altered expression of Mre11, a protein required for double strand break (DSB) repair. Indeed, others have reported that PARP inhibition is efficacious in MSI CRC. METHODS: Here we examine the response to niraparib, a potent PARP-1/PARP-2 inhibitor currently under clinical evaluation, in MSI versus microsatellite stable (MSS) CRC cell lines in vitro and in vivo. We compiled a large panel of MSI and MSS CRC cell lines and evaluated the anti-proliferative activity of niraparib. In addition to testing single agent cytotoxic activity of niraparib, we also tested irinotecan (or SN-38, the active metabolite of irinotecan) activity alone and in combination with niraparib in vitro and in vivo. RESULTS: In contrast to earlier reports, MSI CRC cell lines were not more sensitive to niraparib than MSS CRC cell lines¸ suggesting that the MSI phenotype does not sensitize CRC cell lines to PARP inhibition. Moreover, even the most sensitive MSI cell lines had niraparib EC50s greater than 10 fold higher than BRCA-deficient cell lines. However, MSI lines were more sensitive to SN-38 than MSS lines, consistent with previous findings. We have also demonstrated that combination of niraparib and irinotecan was more efficacious than either agent alone in both MSI and MSS cell lines both in vitro and in vivo, and that niraparib potentiates the effect of irinotecan regardless of MSI status. CONCLUSIONS: Our results support the clinical evaluation of this combination in all CRC patients, regardless of MSI status.

2.
Mol Cancer Ther ; 23(4): 421-435, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030380

RESUMEN

IL12 is a proinflammatory cytokine, that has shown promising antitumor activity in humans by promoting the recruitment and activation of immune cells in tumors. However, the systemic administration of IL12 has been accompanied by considerable toxicity, prompting interest in researching alternatives to drive preferential IL12 bioactivity in the tumor. Here, we have generated XTX301, a tumor-activated IL12 linked to the human Fc protein via a protease cleavable linker that is pharmacologically inactivated by an IL12 receptor subunit beta 2 masking domain. In vitro characterization demonstrates multiple matrix metalloproteases, as well as human primary tumors cultured as cell suspensions, can effectively activate XTX301. Intravenous administration of a mouse surrogate mXTX301 demonstrated significant tumor growth inhibition (TGI) in inflamed and non-inflamed mouse models without causing systemic toxicities. The superiority of mXTX301 in mediating TGI compared with non-activatable control molecules and the greater percentage of active mXTX301 in tumors versus other organs further confirms activation by the tumor microenvironment-associated proteases in vivo. Pharmacodynamic characterization shows tumor selective increases in inflammation and upregulation of immune-related genes involved in IFNγ cell signaling, antigen processing, presentation, and adaptive immune response. XTX301 was tolerated following four repeat doses up to 2.0 mg/kg in a nonhuman primate study; XTX301 exposures were substantially higher than those at the minimally efficacious dose in mice. Thus, XTX301 has the potential to achieve potent antitumor activity while widening the therapeutic index of IL12 treatment and is currently being evaluated in a phase I clinical trial.


Asunto(s)
Interleucina-12 , Neoplasias , Humanos , Ratones , Animales , Interleucina-12/metabolismo , Neoplasias/tratamiento farmacológico , Citocinas , Transducción de Señal , Índice Terapéutico , Microambiente Tumoral
3.
JCO Clin Cancer Inform ; 7: e2200161, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36821804

RESUMEN

PURPOSE: Using patient-reported outcomes (PROs) provides important insights from the patient's perspective and can be valuable to monitor and manage treatment-related adverse events during cancer treatment. Additionally, the digital administration of PROs (electronic PROs [ePROs]) provides real-time updates to clinical care teams on treatment-related symptoms in-between clinic visits. However, given the variability in the methodology and timing of the data collection, using and harmonizing these data across different systems remains challenging. Identifying data elements to capture and operating procedures for harmonization across ePRO tools will expedite efforts to generate relevant and robust data on use of ePRO data in clinical care. METHODS: Friends of Cancer Research assembled a consortium of project partners from key health care sectors to align on a framework for ePRO data capture across ePRO tools and assessment of the impact of ePRO data capture on patient outcomes. RESULTS: We identified challenges and opportunities to align ePRO data capture across ePRO tools and aligned on key data elements for assessing the impact of ePRO data capture on patient care and outcomes. Ultimately, we proposed a study protocol to leverage ePRO data for symptom and adverse event management to measure real-world effectiveness of ePRO tool implementation on patient care and outcomes. CONCLUSION: This work provides considerations for harmonizing ePRO data sets and a common framework to align across multiple ePRO tools to assess the value of ePROs for improving patient outcomes. Future efforts to interpret evidence and evaluate the impact of ePRO tools on patient outcomes will be aided by improved alignment across studies.


Asunto(s)
Medición de Resultados Informados por el Paciente , Programas Informáticos , Humanos , Recolección de Datos , Atención al Paciente , Proyectos de Investigación
4.
J Immunother Cancer ; 11(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38164757

RESUMEN

INTRODUCTION: The clinical benefit of the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab has been well established but limited by immune-related adverse events, especially when ipilimumab is used in combination with anti-PD-(L)1 mAb therapy. To overcome these limitations, we have developed XTX101, a tumor-activated, Fc-enhanced anti-CTLA-4 mAb. METHODS: XTX101 consists of an anti-human CTLA-4 mAb covalently linked to masking peptides that block the complementarity-determining regions, thereby minimizing the mAb binding to CTLA-4. The masking peptides are designed to be released by proteases that are typically dysregulated within the tumor microenvironment (TME), resulting in activation of XTX101 intratumorally. Mutations within the Fc region of XTX101 were included to enhance affinity for FcγRIII, which is expected to enhance potency through antibody-dependent cellular cytotoxicity. RESULTS: Biophysical, biochemical, and cell-based assays demonstrate that the function of XTX101 depends on proteolytic activation. In human CTLA-4 transgenic mice, XTX101 monotherapy demonstrated significant tumor growth inhibition (TGI) including complete responses, increased intratumoral CD8+T cells, and regulatory T cell depletion within the TME while maintaining minimal pharmacodynamic effects in the periphery. XTX101 in combination with anti-PD-1 mAb treatment resulted in significant TGI and was well tolerated in mice. XTX101 was activated in primary human tumors across a range of tumor types including melanoma, renal cell carcinoma, colon cancer and lung cancer in an ex vivo assay system. CONCLUSIONS: These data demonstrate that XTX101 retains the full potency of an Fc-enhanced CTLA-4 antagonist within the TME while minimizing the activity in non-tumor tissue, supporting the further evaluation of XTX101 in clinical studies.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Ratones , Animales , Antígeno CTLA-4 , Ipilimumab/uso terapéutico , Antineoplásicos/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Melanoma/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos/uso terapéutico , Microambiente Tumoral
7.
Cancer Cell ; 2(2): 149-55, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12204535

RESUMEN

Telomere dysfunction and associated fusion-breakage in the mouse encourages epithelial carcinogenesis and a more humanized genomic profile that includes nonreciprocal translocations (NRTs). Here, array comparative genomic hybridization was used to determine the pathogenic significance of NRTs and to determine whether telomere dysfunction also drives amplifications and deletions of cancer-relevant loci. Compared to tumors arising in mice with intact telomeres, tumors with telomere dysfunction possessed higher levels of genomic instability and showed numerous amplifications and deletions in regions syntenic to human cancer hotspots. These observations suggest that telomere-based crisis provides a mechanism of chromosomal instability, including regional amplifications and deletions, that drives carcinogenesis. This model provides a platform for discovery of genes responsible for the major cancers affecting aged humans.


Asunto(s)
Cromosomas de los Mamíferos/genética , Amplificación de Genes , Eliminación de Gen , Neoplasias/genética , Telómero/metabolismo , Animales , Aberraciones Cromosómicas , ADN de Neoplasias/genética , Genes p53 , Genoma , Humanos , Ratones , ARN/genética , Sintenía , Telomerasa/genética , Telómero/genética
8.
iScience ; 15: 109-118, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31048145

RESUMEN

In cancer, autophagy is upregulated to promote cell survival and tumor growth during times of nutrient stress and can confer resistance to drug treatments. Several major signaling networks control autophagy induction, including the p53 tumor suppressor pathway. In response to DNA damage and other cellular stresses, p53 is stabilized and activated, while HDM2 binds to and ubiquitinates p53 for proteasome degradation. Thus blocking the HDM2-p53 interaction is a promising therapeutic strategy in cancer; however, the potential survival advantage conferred by autophagy induction may limit therapeutic efficacy. In this study, we leveraged an HDM2 inhibitor to identify kinases required for p53-dependent autophagy. Interestingly, we discovered that p53-dependent autophagy requires several kinases, including the myotonic dystrophy protein kinase-like alpha (MRCKα). MRCKα is a CDC42 effector reported to activate actin-myosin cytoskeletal reorganization. Overall, this study provides evidence linking MRCKα to autophagy and reveals additional insights into the role of kinases in p53-dependent autophagy.

9.
Nat Commun ; 10(1): 5759, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848333

RESUMEN

PRDM9 is a PR domain containing protein which trimethylates histone 3 on lysine 4 and 36. Its normal expression is restricted to germ cells and attenuation of its activity results in altered meiotic gene transcription, impairment of double-stranded breaks and pairing between homologous chromosomes. There is growing evidence for a role of aberrant expression of PRDM9 in oncogenesis and genome instability. Here we report the discovery of MRK-740, a potent (IC50: 80 ± 16 nM), selective and cell-active PRDM9 inhibitor (Chemical Probe). MRK-740 binds in the substrate-binding pocket, with unusually extensive interactions with the cofactor S-adenosylmethionine (SAM), conferring SAM-dependent substrate-competitive inhibition. In cells, MRK-740 specifically and directly inhibits H3K4 methylation at endogenous PRDM9 target loci, whereas the closely related inactive control compound, MRK-740-NC, does not. The discovery of MRK-740 as a chemical probe for the PRDM subfamily of methyltransferases highlights the potential for exploiting SAM in targeting SAM-dependent methyltransferases.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Sondas Moleculares/farmacología , Cristalografía por Rayos X , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/química , Células HEK293 , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Sondas Moleculares/química , Dominios Proteicos , S-Adenosilmetionina/metabolismo
10.
iScience ; 8: 74-84, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30292171

RESUMEN

In response to stress, cancer cells generate nutrients and energy through a cellular recycling process called autophagy, which can promote survival and tumor progression. Accordingly, autophagy inhibition has emerged as a potential cancer treatment strategy. Inhibitors targeting ULK1, an essential and early autophagy regulator, have provided proof of concept for targeting this kinase to inhibit autophagy; however, these are limited individually in their potency, selectivity, or cellular activity. In this study, we report two small molecule ULK1 inhibitors, ULK-100 and ULK-101, and establish superior potency and selectivity over a noteworthy published inhibitor. Moreover, we show that ULK-101 suppresses autophagy induction and autophagic flux in response to different stimuli. Finally, we use ULK-101 to demonstrate that ULK1 inhibition sensitizes KRAS mutant lung cancer cells to nutrient stress. ULK-101 represents a powerful molecular tool to study the role of autophagy in cancer cells and to evaluate the therapeutic potential of autophagy inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA