Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 123(4): 721-735, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36436029

RESUMEN

PURPOSE: Using exercise protocols at a fixed rating of perceived effort (RPE) is a useful method for exploring the psychophysical influences on exercise performance. However, studies that have employed this protocol have arbitrarily selected RPE values without considering how these values correspond to exercise intensity thresholds and domains. Therefore, aligning RPE intensities with established physiological thresholds seems more appropriate, although the reliability of this method has not been assessed. METHODS: Eight recreationally active cyclists completed two identical ramped incremental trials on a cycle ergometer to identify gas exchange threshold (GET). A linear regression model plotted RPE responses during this test alongside gas parameters to establish an RPE corresponding to GET (RPEGET) and 15% above GET (RPE+15%GET). Participants then completed three trials at each intensity, in which performance, physiological, and psychological measures were averaged into 5-min time zone (TZ) intervals and 30-min 'overall' averages. Data were assessed for reliability using intraclass correlation coefficients (ICC) and accompanying standard error measurements (SEM), 95% confidence intervals, and coefficient of variations (CoV). RESULTS: All performance and gas parameters showed excellent levels of test-retest reliability (ICCs = > .900) across both intensities. Performance, gas-related measures, and heart rate averaged over the entire 30-min exercise demonstrated good intra-individual reliability (CoV = < 5%). CONCLUSION: Recreationally active cyclists can reliably replicate fixed perceived effort exercise across multiple visits when RPE is aligned to physiological thresholds. Some evidence suggests that exercise at RPE+15%GET is more reliable than RPEGET.


Asunto(s)
Prueba de Esfuerzo , Esfuerzo Físico , Humanos , Esfuerzo Físico/fisiología , Reproducibilidad de los Resultados , Prueba de Esfuerzo/métodos , Ejercicio Físico/fisiología , Ciclismo , Frecuencia Cardíaca/fisiología , Consumo de Oxígeno/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38813614

RESUMEN

Pain is a naturally occurring phenomenon that consistently inhibits exercise performance by imposing unconscious, neurophysiological alterations (e.g., corticospinal changes) as well as conscious, psychophysiological pressures (e.g., shared effort demands). Although, several studies indicate that pain would elicit lower task outputs for a set intensity of perceived effort, no study has tested this. Therefore, this study investigated the impact of elevated muscle pain through a hypertonic saline injection on the power output, psychophysiological, cerebral oxygenation, and perceptual changes during fixed perceived effort exercise. Ten participants completed three visits (one familiarisation + two fixed perceived effort trials). Fixed perceived effort cycling corresponded to 15% above gas exchange threshold (mean RPE = 15; hard). Before the 30-minute fixed perceived effort exercise, participants received a randomised, bilateral hypertonic or isotonic saline injection in the vastus lateralis. Power output, cardiorespiratory, cerebral oxygenation, and perceptual markers (e.g., affective valence) were recorded during exercise. Linear mixed model regression assessed the condition and time effects and condition × time interactions. Significant condition effects showed that power output was significantly lower during hypertonic conditions (t_107= 2.08,p=.040,ß=4.77 Watts,95%CI [0.27 to 9.26 Watts]). Meanwhile all physiological variables (e.g., heart rate, oxygen uptake, minute ventilation) demonstrated no significant condition effects. Condition effects were observed for deoxyhaemoglobin changes from baseline (t_107= -3.29,p=.001,ß=-1.50 ΔµM,95%CI [-2.40 to-0.61 ΔµM]) and affective valence (t_127= 6.12,p=.001,ß=0.93,95%CI [0.63,1.23]). Results infer that pain impacts the self-regulation of fixed perceived effort exercise, as differences in power output mainly occurred when pain ratings were higher after hypertonic versus isotonic saline administration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA