Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 292(9): 3637-3655, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28096465

RESUMEN

Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca2+ changes in the nucleoplasm by coupling with Gq/11 Here, we identified a region within the C-terminal domain (amino acids 852-876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca2+in situ.


Asunto(s)
Membrana Nuclear/metabolismo , Receptor del Glutamato Metabotropico 5/química , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Animales , Calcio/química , Membrana Celular/metabolismo , Cromatina/química , Cuerpo Estriado/citología , Citoplasma/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Glutamatos/química , Glicosilación , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Neuronas/metabolismo , Señales de Localización Nuclear , Dominios Proteicos , Ratas
2.
Neurochem Res ; 42(1): 166-172, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27514643

RESUMEN

The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Líquido Intracelular/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ácido Glutámico/farmacología , Líquido Intracelular/efectos de los fármacos , Ratas , Receptor del Glutamato Metabotropico 5/agonistas
3.
J Neurosci ; 34(13): 4589-98, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672004

RESUMEN

Metabotropic glutamate receptor 5 (mGluR5) is widely expressed throughout the CNS and participates in regulating neuronal function and synaptic transmission. Recent work in the striatum led to the groundbreaking discovery that intracellular mGluR5 activation drives unique signaling pathways, including upregulation of ERK1/2, Elk-1 (Jong et al., 2009) and Arc (Kumar et al., 2012). To determine whether mGluR5 signals from intracellular membranes of other cell types, such as excitatory pyramidal neurons in the hippocampus, we used dissociated rat CA1 hippocampal cultures and slice preparations to localize and characterize endogenous receptors. As in the striatum, CA1 neurons exhibited an abundance of mGluR5 both on the cell surface and intracellular membranes, including the endoplasmic reticulum and the nucleus where it colocalized with the sodium-dependent excitatory amino acid transporter, EAAT3. Inhibition of EAAT3 or sodium-free buffer conditions prevented accumulations of radiolabeled agonist. Using a pharmacological approach to isolate different pools of mGluR5, both intracellular and cell surface receptors induced oscillatory Ca(2+) responses in dissociated CA1 neurons; however, only intracellular mGluR5 activation triggered sustained high amplitude Ca(2+) rises in dendrites. Consistent with the notion that mGluR5 can signal from intracellular membranes, uncaging glutamate on a CA1 dendrite led to a local Ca(2+) rise, even in the presence of ionotropic and cell surface metabotropic receptor inhibitors. Finally, activation of intracellular mGluR5 alone mediated both electrically induced and chemically induced long-term depression, but not long-term potentiation, in acute hippocampal slices. These data suggest a physiologically relevant and important role for intracellular mGluR5 in hippocampal synaptic plasticity.


Asunto(s)
Hipocampo/citología , Líquido Intracelular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/citología , Receptor del Glutamato Metabotropico 5/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Líquido Intracelular/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura
4.
Infect Immun ; 83(3): 1039-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25547791

RESUMEN

Toxoplasma gondii infection has been described previously to cause infected mice to lose their fear of cat urine. This behavioral manipulation has been proposed to involve alterations of host dopamine pathways due to parasite-encoded aromatic amino acid hydroxylases. Here, we report successful knockout and complementation of the aromatic amino acid hydroxylase AAH2 gene, with no observable phenotype in parasite growth or differentiation in vitro and in vivo. Additionally, expression levels of the two aromatic amino acid hydroxylases were negligible both in tachyzoites and in bradyzoites. Finally, we were unable to confirm previously described effects of parasite infection on host dopamine either in vitro or in vivo, even when AAH2 was overexpressed using the BAG1 promoter. Together, these data indicate that AAH enzymes in the parasite do not cause global or regional alterations of dopamine in the host brain, although they may affect this pathway locally. Additionally, our findings suggest alternative roles for the AHH enzymes in T. gondii, since AAH1 is essential for growth in nondopaminergic cells.


Asunto(s)
Encéfalo/metabolismo , Estadios del Ciclo de Vida , Oxigenasas de Función Mixta/genética , Proteínas Protozoarias/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis Animal/metabolismo , Animales , Gatos , Dopamina/metabolismo , Femenino , Eliminación de Gen , Expresión Génica , Interacciones Huésped-Parásitos , Isoenzimas/deficiencia , Isoenzimas/genética , Ratones , Oxigenasas de Función Mixta/deficiencia , Plásmidos , Regiones Promotoras Genéticas , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasma/genética , Toxoplasmosis Animal/parasitología
5.
Mol Pharmacol ; 86(6): 774-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326002

RESUMEN

Although G protein-coupled receptors are primarily known for converting extracellular signals into intracellular responses, some receptors, such as the group 1 metabotropic glutamate receptor, mGlu5, are also localized on intracellular membranes where they can mediate both overlapping and unique signaling effects. Thus, besides "ligand bias," whereby a receptor's signaling modality can shift from G protein dependence to independence, canonical mGlu5 receptor signaling can also be influenced by "location bias" (i.e., the particular membrane and/or cell type from which it signals). Because mGlu5 receptors play important roles in both normal development and in disorders such as Fragile X syndrome, autism, epilepsy, addiction, anxiety, schizophrenia, pain, dyskinesias, and melanoma, a large number of drugs are being developed to allosterically target this receptor. Therefore, it is critical to understand how such drugs might be affecting mGlu5 receptor function on different membranes and in different brain regions. Further elucidation of the site(s) of action of these drugs may determine which signal pathways mediate therapeutic efficacy.


Asunto(s)
Receptor del Glutamato Metabotropico 5/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal/fisiología , Animales , Arrestinas/fisiología , Calcio/metabolismo , Humanos , Fosforilación , Receptor del Glutamato Metabotropico 5/análisis , Receptor del Glutamato Metabotropico 5/química , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Receptores de Glutamato Metabotrópico/análisis , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/efectos de los fármacos , beta-Arrestinas
6.
J Biol Chem ; 287(8): 5412-25, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22179607

RESUMEN

The G-protein coupled receptor, metabotropic glutamate receptor 5 (mGluR5), is expressed on both cell surface and intracellular membranes in striatal neurons. Using pharmacological tools to differentiate membrane responses, we previously demonstrated that cell surface mGluR5 triggers rapid, transient cytoplasmic Ca(2+) rises, resulting in c-Jun N-terminal kinase, Ca(2+)/calmodulin-dependent protein kinase, and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein (CREB) phosphorylation, whereas stimulation of intracellular mGluR5 induces long, sustained Ca(2+) responses leading to the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Elk-1 (Jong, Y. J., Kumar, V., and O'Malley, K. L. (2009) J. Biol. Chem. 284, 35827-35838). Using pharmacological, genetic, and bioinformatics approaches, the current findings show that both receptor populations up-regulate many immediate early genes involved in growth and differentiation. Activation of intracellular mGluR5 also up-regulates genes involved in synaptic plasticity including activity-regulated cytoskeletal-associated protein (Arc/Arg3.1). Mechanistically, intracellular mGluR5-mediated Arc induction is dependent upon extracellular and intracellular Ca(2+) and ERK1/2 as well as calmodulin-dependent kinases as known chelators, inhibitors, and a dominant negative Ca(2+)/calmodulin-dependent protein kinase II construct block Arc increases. Moreover, intracellular mGluR5-induced Arc expression requires the serum response transcription factor (SRF) as wild type but not SRF-deficient neurons show this response. Finally, increased Arc levels due to high K(+) depolarization is significantly reduced in response to a permeable but not an impermeable mGluR5 antagonist. Taken together, these data highlight the importance of intracellular mGluR5 in the cascade of events associated with sustained synaptic transmission.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Espacio Intracelular/metabolismo , Neostriado/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Receptores de Glutamato Metabotrópico/metabolismo , Transmisión Sináptica/genética , Regulación hacia Arriba , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Genes Inmediatos-Precoces/genética , Ácido Glutámico/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/metabolismo , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Factor de Respuesta Sérica/metabolismo
7.
J Neurosci ; 31(19): 7212-21, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21562285

RESUMEN

Impaired axonal transport may play a key role in Parkinson's disease. To test this notion, a microchamber system was adapted to segregate axons from cell bodies using green fluorescent protein-labeled mouse dopamine (DA) neurons. Transport was examined in axons challenged with the DA neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+). MPP+ rapidly reduced overall mitochondrial motility in DA axons; among motile mitochondria, anterograde transport was slower yet retrograde transport was increased. Transport effects were specific for DA mitochondria, which were smaller and transported more slowly than their non-DA counterparts. MPP+ did not affect synaptophysin-tagged vesicles or any other measureable moving particle. Toxin effects on DA mitochondria were not dependent upon ATP, calcium, free radical species, JNK, or caspase3/PKC pathways but were completely blocked by the thiol-anti-oxidant N-acetyl-cysteine or membrane-permeable glutathione. Since these drugs also rescued processes from degeneration, these findings emphasize the need to develop therapeutics aimed at axons as well as cell bodies to preserve "normal" circuitry and function as long as possible.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Transporte Axonal/efectos de los fármacos , Axones/efectos de los fármacos , Dopamina/metabolismo , Mitocondrias/efectos de los fármacos , Neurotoxinas/farmacología , Análisis de Varianza , Animales , Autofagia/efectos de los fármacos , Axones/metabolismo , Supervivencia Celular/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
8.
Hum Mol Genet ; 19(22): 4515-28, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20826448

RESUMEN

Learning and behavioral abnormalities are among the most common clinical problems in children with the neurofibromatosis-1 (NF1) inherited cancer syndrome. Recent studies using Nf1 genetically engineered mice (GEM) have been instructive for partly elucidating the cellular and molecular defects underlying these cognitive deficits; however, no current model has shed light on the more frequently encountered attention system abnormalities seen in children with NF1. Using an Nf1 optic glioma (OPG) GEM model, we report novel defects in non-selective and selective attention without an accompanying hyperactivity phenotype. Specifically, Nf1 OPG mice exhibit reduced rearing in response to novel objects and environmental stimuli. Similar to children with NF1, the attention system dysfunction in these mice is reversed by treatment with methylphenidate (MPH), suggesting a defect in brain catecholamine homeostasis. We further demonstrate that this attention system abnormality is the consequence of reduced dopamine (DA) levels in the striatum, which is normalized following either MPH or l-dopa administration. The reduction in striatal DA levels in Nf1 OPG mice is associated with reduced striatal expression of tyrosine hydroxylase, the rate-limited enzyme in DA synthesis, without any associated dopaminergic cell loss in the substantia nigra. Moreover, we demonstrate a cell-autonomous defect in Nf1+/- dopaminergic neuron growth cone areas and neurite extension in vitro, which results in decreased dopaminergic cell projections to the striatum in Nf1 OPG mice in vivo. Collectively, these data establish abnormal DA homeostasis as the primary biochemical defect underlying the attention system dysfunction in Nf1 GEM relevant to children with NF1.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Atención , Dopamina/metabolismo , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Animales , Encéfalo/metabolismo , Niño , Cuerpo Estriado/metabolismo , Dopamina/genética , Genes de Neurofibromatosis 1 , Humanos , Levodopa/genética , Levodopa/metabolismo , Metilfenidato/metabolismo , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Actividad Motora/genética , Neurofibromatosis 1/enzimología , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Neuronas/metabolismo , Glioma del Nervio Óptico/genética , Glioma del Nervio Óptico/metabolismo , Sustancia Negra/metabolismo
9.
J Biol Chem ; 284(51): 35827-38, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19840937

RESUMEN

G-protein-coupled receptors are thought to transmit extracellular signals to the cytoplasm from their position on the cell surface. Some receptors, including the metabotropic glutamate receptor 5 (mGluR5), are also highly expressed on intracellular membranes where they serve unknown functions. Here, we show that activation of cell surface versus intracellular mGluR5 results in unique Ca(2+) signatures leading to unique cellular responses. Specifically, activation of either cell surface or intracellular mGluR5 leads to JNK, Ca(2+)/calmodulin-dependent protein kinase (CaMK), and cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas activation of only intracellular mGluR5 leads to ERK1/2 and Elk-1 phosphorylation. Using pharmacological and genetic approaches, the present findings support a role for CaMK kinase in mediating mGluR5-dependent cyclic adenosine 3',5'-monophosphate-responsive element-binding protein phosphorylation, whereas CaMKII is upstream of intracellular mGluR5-mediated Elk-1 phosphorylation. Consistent with models showing Elk-1 regulating cascades of gene expression, the known Elk-1 targets c-fos and egr1 were up-regulated following intracellular mGluR5 activation, whereas a representative non-Elk-1 target, c-jun, was not. These findings emphasize that glutamate not only serves as a neurotransmitter for cell surface receptors but, when transported into the cell, can also activate intracellular receptors such as mGluR5. Glutamate activation of intracellular mGluR5 serves an important role in the regulation of nuclear Ca(2+), transcriptional activation, and gene expression necessary for physiological processes such as synaptic plasticity.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Plasticidad Neuronal/fisiología , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Elementos de Respuesta/fisiología , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
10.
ACS Chem Neurosci ; 10(11): 4558-4570, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31609579

RESUMEN

Emerging data indicate that G-protein coupled receptor (GPCR) signaling is determined by not only the agonist and a given receptor but also a variety of cell-type-specific factors that can influence a receptor's response. For example, the metabotropic glutamate receptor, mGlu5, which is implicated in a number of neuropsychiatric disorders such as depression, anxiety, and autism, also signals from inside the cell which leads to sustained Ca2+ mobilization versus rapid transient responses. Because mGlu5 is an important drug target, many negative allosteric modulators (NAMs) have been generated to modulate its activity. Here we show that NAMs such as AFQ056, AZD2066, and RG7090 elicit very different end points when tested in postnatal neuronal cultures expressing endogenous mGlu5 receptors. For example, AFQ056 fails to block intracellular mGlu5-mediated Ca2+ increases whereas RG7090 is very effective. These differences are not due to differential receptor levels, since about the same number of mGlu5 receptors are present on neurons from the cortex, hippocampus, and striatum based on pharmacological, biochemical, and molecular data. Moreover, biotinylation studies reveal that more than 90% of the receptor is intracellular in these neurons. Taken together, these data indicate that the tested NAMs exhibit both location-dependent and cell type specific bias for mGlu5-mediated Ca2+ mobilization which may affect clinical outcomes.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Células Cultivadas , Células HEK293 , Humanos , Indoles/metabolismo , Indoles/farmacología , Isoxazoles/metabolismo , Isoxazoles/farmacología , Ratas , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Triazoles/metabolismo , Triazoles/farmacología
11.
Br J Pharmacol ; 175(21): 4026-4035, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-28872669

RESUMEN

Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.


Asunto(s)
Células/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Células/efectos de los fármacos , Humanos , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
12.
ACS Chem Neurosci ; 9(9): 2162-2172, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29409317

RESUMEN

The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.


Asunto(s)
Plasticidad Neuronal , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/metabolismo , Animales , Núcleo Celular/metabolismo , Espinas Dendríticas/metabolismo , Endocitosis , Retículo Endoplásmico , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Transducción de Señal
13.
Antioxid Redox Signal ; 9(12): 2255-64, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17848102

RESUMEN

Parkinson's disease (PD) involves an irreversible degeneration of the nigrostriatal pathway. As most cases of PD are sporadic, environmental risk factors may underlie neurodegeneration in dopaminergic neurons. One such factor is 6-hydroxydopamine (6-OHDA), which is widely used as a parkinsonian mimetic. Studies have shown that 6-OHDA generates reactive oxygen species and induces cell stress, the unfolded protein response, and apoptosis. Present findings show that 6-OHDA, but not hydrogen peroxide, MPP+, or rotenone, leads to the rapid formation of high-molecular-weight species of protein disulfide isomerase-associated protein 3 (ERp57) in a dose- and time-dependent fashion. Moreover, ERp57 conjugates are blocked by N-acetylcysteine and glutathione, suggesting that they represent oxidized forms of protein. Surprisingly, conjugates are complexed with DNA, because treatment with DNase reduces their appearance. Subcellular fractionation indicates that both nuclear and mitochondrial DNA are associated with the protein. Finally, toxin-treated ERp57 rapidly forms juxtanuclear aggresome-like structures in dopaminergic cells, suggesting that ERp57 plays an early adaptive response in toxin-mediated stress. Understanding the signaling mechanisms associated with parkinsonian mimetics, as well as their temporal induction, may aid in designing better interventions in models of PD.


Asunto(s)
Chaperonas Moleculares/metabolismo , Oxidopamina/farmacología , Proteína Disulfuro Isomerasas/metabolismo , Estrés Fisiológico/inducido químicamente , Animales , Línea Celular Transformada , Células Cultivadas , Medio de Cultivo Libre de Suero , Desoxirribonucleasas/farmacología , Inmunohistoquímica , Mesencéfalo/citología , Mesencéfalo/embriología , Ratones , Peso Molecular , Neuronas/metabolismo , Oxidación-Reducción , Enfermedad de Parkinson , Desnaturalización Proteica/efectos de los fármacos , Proteína Disulfuro Isomerasas/química , Ribonucleasas/farmacología , Fracciones Subcelulares/metabolismo
14.
J Neurosci ; 25(41): 9428-33, 2005 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-16221852

RESUMEN

Dopamine (DA) has been postulated to play a role in the loss of dopaminergic substantia nigra (SN) neurons in Parkinson's disease because of its propensity to oxidize and form quinones and other reactive oxygen species that can alter cellular function. Moreover, DA depletion can attenuate dopaminergic cell loss in vitro. To test the contribution of DA to SN impairment in vivo, we used DA-deficient mice, which lack the enzyme tyrosine hydroxylase in dopaminergic cells, and mice pharmacologically depleted of DA by alpha-methyl-p-tyrosine pretreatment. Mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin that produces parkinsonian pathology in humans, nonhuman primates, and rodents. In contrast to in vitro results, genetic or pharmacologic DA depletion did not attenuate loss of dopaminergic neurons in the SN or dopaminergic neuron terminals in the striatum. These results suggest that DA does not contribute to acute MPTP toxicity in vivo.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , Dopamina/deficiencia , Intoxicación por MPTP/metabolismo , Neurotoxinas/administración & dosificación , Animales , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Nat Commun ; 7: 10604, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26837579

RESUMEN

Spinal mGluR5 is a key mediator of neuroplasticity underlying persistent pain. Although brain mGluR5 is localized on cell surface and intracellular membranes, neither the presence nor physiological role of spinal intracellular mGluR5 is established. Here we show that in spinal dorsal horn neurons >80% of mGluR5 is intracellular, of which ∼60% is located on nuclear membranes, where activation leads to sustained Ca(2+) responses. Nerve injury inducing nociceptive hypersensitivity also increases the expression of nuclear mGluR5 and receptor-mediated phosphorylated-ERK1/2, Arc/Arg3.1 and c-fos. Spinal blockade of intracellular mGluR5 reduces neuropathic pain behaviours and signalling molecules, whereas blockade of cell-surface mGluR5 has little effect. Decreasing intracellular glutamate via blocking EAAT-3, mimics the effects of intracellular mGluR5 antagonism. These findings show a direct link between an intracellular GPCR and behavioural expression in vivo. Blockade of intracellular mGluR5 represents a new strategy for the development of effective therapies for persistent pain.


Asunto(s)
Conducta Animal , Calcio/metabolismo , Ácido Glutámico/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Células del Asta Posterior/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Neuropatía Ciática/metabolismo , Analgésicos Opioides/farmacología , Animales , Western Blotting , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Ácido Glutámico/farmacología , Hiperalgesia/patología , Inmunohistoquímica , Inyecciones Espinales , Masculino , Microdiálisis , Microscopía Confocal , Microscopía Electrónica , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Morfina/farmacología , Proteínas del Tejido Nervioso/metabolismo , Células del Asta Posterior/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Ratas Long-Evans , Nervio Ciático/lesiones , Neuropatía Ciática/patología
16.
Antioxid Redox Signal ; 7(5-6): 639-48, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15890008

RESUMEN

The parkinsonian mimetic 6-hydroxydopamine (6-OHDA) has been shown to cause transcriptional changes associated with cellular stress and the unfolded protein response. As these cellular sequelae depend on upstream signaling events, the present study used functional genomics and proteomic approaches to aid in deciphering toxin-mediated regulatory pathways. Microarray analysis of RNA collected from multiple time points following 6-OHDA treatment was combined with data mining and clustering techniques to identify distinct functional subgroups of genes. Notably, stress-induced transcription factors such as ATF3, ATF4, CHOP, and C/EBP beta were robustly up-regulated, yet exhibited unique kinetic patterns. Genes involved in the synthesis and modification of proteins (various tRNA synthetases), protein degradation (e.g., ubiquitin, Herpud1, Sqstm1), and oxidative stress (Hmox1, Por) could be subgrouped into distinct kinetic profiles as well. Realtime PCR and/or two-dimensional electrophoresis combined with western blotting validated data derived from microarray analyses. Taken together, these data support the notion that oxidative stress and protein dysfunction play a role in Parkinson's disease, as well as provide a time course for many of the molecular events associated with 6-OHDA neurotoxicity.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidopamina/toxicidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1 , Cinética , Proteínas de la Membrana , Ratones , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transcripción Genética/genética
17.
Methods Mol Biol ; 1234: 113-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25304352

RESUMEN

A growing number of G protein-coupled receptors (GPCRs) have been identified on nuclear membranes. In many cases, it is unknown how the intracellular GPCR is activated, how it is trafficked to nuclear membranes, and what long-term signaling consequences follow nuclear receptor activation. Here we describe how to isolate nuclei that are free from plasma membrane and cytoplasmic contamination yet still exhibit physiological properties following receptor activation.


Asunto(s)
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Calcio/metabolismo , Imagen Molecular/métodos , Membrana Nuclear/metabolismo , Cultivo Primario de Células , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
18.
Sci Rep ; 5: 12752, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26238334

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The PPT1-deficient mouse (Cln1(-/-)) is a useful phenocopy of human INCL. Cln1(-/-) mice display retinal dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about the cognitive and behavioral functions of Cln1(-/-) mice during disease progression. In the present study, younger (~1-2 months of age) Cln1(-/-) mice showed minor deficits in motor/sensorimotor functions while older (~5-6 months of age) Cln1(-/-) mice exhibited more severe impairments, including decreased locomotor activity, inferior cued water maze performance, decreased running wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such as some learning and memory capabilities seemed intact in older Cln1(-/-) mice. Younger and older Cln1(-/-) mice presented with walking initiation defects, gait abnormalities, and slowed movements, which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no evidence of alterations in dopaminergic markers in Cln1(-/-) mice. Results from this study demonstrate quantifiable changes in behavioral functions during progression of murine INCL and suggest that Parkinson-like motor/sensorimotor deficits in Cln1(-/-) mice are not mediated by dopamine deficiency.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Convulsiones/metabolismo , Tioléster Hidrolasas/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neuronas Dopaminérgicas/patología , Femenino , Expresión Génica , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Actividad Motora , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Enfermedad de Parkinson Secundaria/genética , Enfermedad de Parkinson Secundaria/patología , Patrones de Reconocimiento Fisiológico , Convulsiones/genética , Convulsiones/patología , Transducción de Señal , Tioléster Hidrolasas/deficiencia
19.
Brain Res Mol Brain Res ; 126(2): 173-80, 2004 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-15249141

RESUMEN

A prerequisite for creating animal models in which gene expression is spatially and temporally controlled is the development of promoters to target genetic switches to specific populations of cells. Here we used the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH) to test various combinations of tetracycline (Tet) system elements to determine the optimal configuration for inducible, tissue-specific expression. The present study shows that the degree of expression and level of leakiness associated with the Tet transactivators rtTA, rtTA2S-M2, tTS/rtTA or tTS/rtTA2S-M2 was dependent upon both the promoter and cell type utilized. Specifically, CMV-driven tTS/rtTA2S-M2 exhibited the highest level of inducibility in HEK cells (approximately 1000-fold) versus the dopaminergic cell line, MN9D (approximately 70-fold). In contrast, TH-driven rtTA2S-M2 yielded the highest level of expression with the least background in dopaminergic cell types versus HEK cells. Moreover, the TH promoter could be combined with the bi-directional Tet response system, BiTetO, allowing for the co-expression and regulation of two genes in the same cell. To further test the feasibility of this system we replaced the reporter gene with human Bcl-2. Consistent with previous studies, induction of Bcl-2 expression in dopaminergic cell types attenuated cell death due to the neurotoxin, MPP+. Taken together, these data suggest that targeted, inducible gene expression can be achieved in dopaminergic cell types.


Asunto(s)
Dopamina/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Tetraciclina/farmacología , Tirosina 3-Monooxigenasa/genética , Animales , Línea Celular , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Genes Reporteros/fisiología , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica/métodos , Riñón , Proteínas Luminiscentes/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transactivadores/genética , Activación Transcripcional , Transfección/métodos
20.
Mol Neurodegener ; 9: 17, 2014 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-24885281

RESUMEN

6-hydroxydopamine (6-OHDA) is one of the most commonly used toxins for modeling degeneration of dopaminergic (DA) neurons in Parkinson's disease. 6-OHDA also causes axonal degeneration, a process that appears to precede the death of DA neurons. To understand the processes involved in 6-OHDA-mediated axonal degeneration, a microdevice designed to isolate axons fluidically from cell bodies was used in conjunction with green fluorescent protein (GFP)-labeled DA neurons. Results showed that 6-OHDA quickly induced mitochondrial transport dysfunction in both DA and non-DA axons. This appeared to be a general effect on transport function since 6-OHDA also disrupted transport of synaptophysin-tagged vesicles. The effects of 6-OHDA on mitochondrial transport were blocked by the addition of the SOD1-mimetic, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride (MnTBAP), as well as the anti-oxidant N-acetyl-cysteine (NAC) suggesting that free radical species played a role in this process. Temporally, microtubule disruption and autophagy occurred after transport dysfunction yet before DA cell death following 6-OHDA treatment. The results from the study suggest that ROS-mediated transport dysfunction occurs early and plays a significant role in inducing axonal degeneration in response to 6-OHDA treatment.


Asunto(s)
Adrenérgicos/toxicidad , Transporte Axonal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidopamina/toxicidad , Animales , Transporte Axonal/fisiología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Mitocondrias/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA