Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Endovasc Ther ; : 15266028221125592, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36147025

RESUMEN

PURPOSE: Robotic-assisted carotid artery stenting (CAS) cases have been demonstrated with promising results. However, no quantitative measurements have been made to compare manual with robotic-assisted CAS. This study aims to quantify surgical performance using tool tip kinematic data and metrics of precision during CAS with manual and robotic control in an ex vivo model. MATERIALS AND METHODS: Transfemoral CAS cases were performed in a high-fidelity endovascular simulator. Participants completed cases with manual and robotic techniques in 2 different carotid anatomies in random order. C-arm angulations, table position, and endovascular devices were standardized. Endovascular tool tip kinematic data were extracted. We calculated the spectral arc length (SPARC), average velocity, and idle time during navigation in the common carotid artery and lesion crossing. Procedural time, fluoroscopy time, movements of the deployed filter wire, precision of stent, and balloon positioning were recorded. Data were analyzed and compared between the 2 modalities. RESULTS: Ten participants performed 40 CAS cases with a procedural success of 100% and 0% residual stenosis. The median procedural time was significantly higher during the robotic-assisted cases (seconds, median [interquartile range, IQR]: 128 [49.5] and 161.5 [62.5], p=0.02). Fluoroscopy time differed significantly between manual and robotic-assisted procedures (seconds, median [IQR]: 81.5 [32] and 98.5 [39.5], p=0.1). Movement of the deployed filter wire did not show significant difference between manual and robotic interventions (mm, median [IQR]: 13 [10.5] and 12.5 [11], p=0.5). The postdilation balloon exceeded the margin of the stent with a median of 2 [1] mm in both groups. Navigation with robotic assistance showed significantly lower SPARC values (-5.78±3.14 and -8.63±3.98, p=0.04) and higher idle time values (8.92±8.71 and 3.47±3.9, p=0.02) than those performed manually. CONCLUSIONS: Robotic-assisted and manual CAS cases are comparable in the precision of stent and balloon positioning. Navigation in the carotid artery is associated with smoother motion and higher idle time values. These findings highlight the accuracy and the motion stabilizing capability of the endovascular robotic system. CLINICAL IMPACT: Robotic assistance in the treatment of peripheral vascular disease is an emerging field and may be a tool for radiation protection and the geographic distribution of endovascular interventions in the future. This preclinical study compares the characteristics of manual and robotic-assisted carotid stenting (CAS). Our results highlight, that robotic-assisted CAS is associated with precise navigation and device positioning, and smoother navigation compared to manual CAS.

2.
J Vasc Surg ; 72(6): 2161-2165, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32276027

RESUMEN

OBJECTIVE: The Fundamentals of Endovascular and Vascular Surgery, a curriculum that includes an endovascular model for skills testing, aims to differentiate between competent and noncompetent performers. The aim of our study was to further validate the model and to test its reliability in assessing the performance of endovascular trainees in an uncontrolled setting. METHODS: The model was tested exclusively in a virtual reality environment. On the basis of their endovascular experience, 52 participants were divided into three groups: novice (<50 endovascular cases), intermediate (50-500 endovascular cases), and expert (>500 endovascular cases). Performance was evaluated in four tasks, measuring the tool tip position and velocity on the virtual model. Average tool tip velocity and movement smoothness in the velocity frequency domain are validated parameters defining proficiency of movement. The data were filtered and interpolated to calculate the metrics. Trials containing critical tool manipulation errors were excluded. RESULTS: In total, 52 tasks completed by novices, 25 completed by intermediates, and 38 completed by experts were analyzed to determine performance. The difference in performance between the novice and expert groups was statistically significant for guidewire smoothness (P < .001). The expert group had a statistically significantly higher average guidewire velocity compared with the novice group (P < .001). CONCLUSIONS: The Fundamentals of Endovascular and Vascular Surgery model continues to differentiate novices from experts on the basis of their handling of guidewire and catheter tools, measured as smoothness and velocity. This model offers a useful instrument to test competency of endovascular surgeons.


Asunto(s)
Competencia Clínica , Educación de Postgrado en Medicina , Procedimientos Endovasculares/educación , Internado y Residencia , Entrenamiento Simulado , Cirujanos/educación , Realidad Virtual , Instrucción por Computador , Curriculum , Femenino , Humanos , Masculino , Modelos Cardiovasculares , Destreza Motora , Estudios Prospectivos , Análisis y Desempeño de Tareas
3.
J Vasc Surg ; 67(4): 1274-1281, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28583735

RESUMEN

OBJECTIVE: Combining three-dimensional (3D) catheter control with electromagnetic (EM) tracking-based navigation significantly reduced fluoroscopy time and improved robotic catheter movement quality in a previous in vitro pilot study. The aim of this study was to expound on previous results and to expand the value of EM tracking with a novel feature, assistednavigation, allowing automatic catheter orientation and semiautomatic vessel cannulation. METHODS: Eighteen users navigated a robotic catheter in an aortic aneurysm phantom using an EM guidewire and a modified 9F robotic catheter with EM sensors at the tip of both leader and sheath. All users cannulated two targets, the left renal artery and posterior gate, using four visualization modes: (1) Standard fluoroscopy (control). (2) 2D biplane fluoroscopy showing real-time virtual catheter localization and orientation from EM tracking. (3) 2D biplane fluoroscopy with novel EM assisted navigation allowing the user to define the target vessel. The robotic catheter orients itself automatically toward the target; the user then only needs to advance the guidewire following this predefined optimized path to catheterize the vessel. Then, while advancing the catheter over the wire, the assisted navigation automatically modifies catheter bending and rotation in order to ensure smooth progression, avoiding loss of wire access. (4) Virtual 3D representation of the phantom showing real-time virtual catheter localization and orientation. Standard fluoroscopy was always available; cannulation and fluoroscopy times were noted for every mode and target cannulation. Quality of catheter movement was assessed by measuring the number of submovements of the catheter using the 3D coordinates of the EM sensors. A t-test was used to compare the standard fluoroscopy mode against EM tracking modes. RESULTS: EM tracking significantly reduced the mean fluoroscopy time (P < .001) and the number of submovements (P < .02) for both cannulation tasks. For the posterior gate, mean cannulation time was also significantly reduced when using EM tracking (P < .001). The use of novel EM assisted navigation feature (mode 3) showed further reduced cannulation time for the posterior gate (P = .002) and improved quality of catheter movement for the left renal artery cannulation (P = .021). CONCLUSIONS: These results confirmed the findings of a prior study that highlighted the value of combining 3D robotic catheter control and 3D navigation to improve safety and efficiency of endovascular procedures. The novel EM assisted navigation feature augments the robotic master/slave concept with automated catheter orientation toward the target and shows promising results in reducing procedure time and improving catheter motion quality.


Asunto(s)
Aneurisma de la Aorta/cirugía , Cateterismo Periférico/instrumentación , Fenómenos Electromagnéticos , Procedimientos Endovasculares/instrumentación , Radiografía Intervencional/instrumentación , Procedimientos Quirúrgicos Robotizados/instrumentación , Dispositivos de Acceso Vascular , Aneurisma de la Aorta/diagnóstico por imagen , Automatización , Diseño de Equipo , Fluoroscopía , Humanos , Modelos Anatómicos , Tempo Operativo , Fantasmas de Imagen
4.
J Vasc Surg ; 65(2): 530-537, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26994950

RESUMEN

OBJECTIVE: One limitation of the use of robotic catheters is the lack of real-time three-dimensional (3D) localization and position updating: they are still navigated based on two-dimensional (2D) X-ray fluoroscopic projection images. Our goal was to evaluate whether incorporating an electromagnetic (EM) sensor on a robotic catheter tip could improve endovascular navigation. METHODS: Six users were tasked to navigate using a robotic catheter with incorporated EM sensors in an aortic aneurysm phantom. All users cannulated two anatomic targets (left renal artery and posterior "gate") using four visualization modes: (1) standard fluoroscopy mode (control), (2) 2D fluoroscopy mode showing real-time virtual catheter orientation from EM tracking, (3) 3D model of the phantom with anteroposterior and endoluminal view, and (4) 3D model with anteroposterior and lateral view. Standard X-ray fluoroscopy was always available. Cannulation and fluoroscopy times were noted for every mode. 3D positions of the EM tip sensor were recorded at 4 Hz to establish kinematic metrics. RESULTS: The EM sensor-incorporated catheter navigated as expected according to all users. The success rate for cannulation was 100%. For the posterior gate target, mean cannulation times in minutes:seconds were 8:12, 4:19, 4:29, and 3:09, respectively, for modes 1, 2, 3 and 4 (P = .013), and mean fluoroscopy times were 274, 20, 29, and 2 seconds, respectively (P = .001). 3D path lengths, spectral arc length, root mean dimensionless jerk, and number of submovements were significantly improved when EM tracking was used (P < .05), showing higher quality of catheter movement with EM navigation. CONCLUSIONS: The EM tracked robotic catheter allowed better real-time 3D orientation, facilitating navigation, with a reduction in cannulation and fluoroscopy times and improvement of motion consistency and efficiency.


Asunto(s)
Aneurisma de la Aorta/cirugía , Fenómenos Electromagnéticos , Procedimientos Endovasculares/instrumentación , Imanes , Procedimientos Quirúrgicos Robotizados/instrumentación , Transductores , Dispositivos de Acceso Vascular , Aneurisma de la Aorta/diagnóstico por imagen , Aortografía , Procedimientos Endovasculares/efectos adversos , Procedimientos Endovasculares/métodos , Diseño de Equipo , Estudios de Factibilidad , Fluoroscopía , Humanos , Imagenología Tridimensional , Ensayo de Materiales , Modelos Anatómicos , Destreza Motora , Tempo Operativo , Estudios Prospectivos , Dosis de Radiación , Exposición a la Radiación , Interpretación de Imagen Radiográfica Asistida por Computador , Arteria Renal/diagnóstico por imagen , Procedimientos Quirúrgicos Robotizados/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Análisis y Desempeño de Tareas , Factores de Tiempo
5.
J Vasc Surg ; 61(2): 535-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25619579

RESUMEN

OBJECTIVE: Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. METHODS: During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices <2 hours to moderate-extensive experience with >20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). RESULTS: Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. CONCLUSIONS: This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that translate to expert robotic navigation.


Asunto(s)
Competencia Clínica , Educación de Postgrado en Medicina/métodos , Procedimientos Endovasculares/educación , Destreza Motora , Robótica/educación , Cirugía Asistida por Computador/educación , Fenómenos Biomecánicos , Procedimientos Endovasculares/instrumentación , Diseño de Equipo , Femenino , Humanos , Curva de Aprendizaje , Masculino , Movimiento (Física) , Robótica/instrumentación , Cirugía Asistida por Computador/instrumentación , Análisis y Desempeño de Tareas
6.
J Vasc Surg ; 62(6): 1660-6.e3, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26598123

RESUMEN

OBJECTIVE: Fundamental skills testing is now required for certification in general surgery. No model for assessing fundamental endovascular skills exists. Our objective was to develop a model that tests the fundamental endovascular skills and differentiates competent from noncompetent performance. METHODS: The Fundamentals of Endovascular Surgery model was developed in silicon and virtual-reality versions. Twenty individuals (with a range of experience) performed four tasks on each model in three separate sessions. Tasks on the silicon model were performed under fluoroscopic guidance, and electromagnetic tracking captured motion metrics for catheter tip position. Image processing captured tool tip position and motion on the virtual model. Performance was evaluated using a global rating scale, blinded video assessment of error metrics, and catheter tip movement and position. Motion analysis was based on derivations of speed and position that define proficiency of movement (spectral arc length, duration of submovement, and number of submovements). RESULTS: Performance was significantly different between competent and noncompetent interventionalists for the three performance measures of motion metrics, error metrics, and global rating scale. The mean error metric score was 6.83 for noncompetent individuals and 2.51 for the competent group (P < .0001). Median global rating scores were 2.25 for the noncompetent group and 4.75 for the competent users (P < .0001). CONCLUSIONS: The Fundamentals of Endovascular Surgery model successfully differentiates competent and noncompetent performance of fundamental endovascular skills based on a series of objective performance measures. This model could serve as a platform for skills testing for all trainees.


Asunto(s)
Certificación/normas , Competencia Clínica , Procedimientos Endovasculares/normas , Cirugía General/educación , Cirugía General/normas , Modelos Educacionales , Robótica/normas , Adulto , Educación Médica Continua , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Análisis y Desempeño de Tareas
7.
J Neuroeng Rehabil ; 12: 104, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26602538

RESUMEN

BACKGROUND: Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback. METHODS: We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision. RESULTS: Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants. CONCLUSIONS: Our results suggest that a backdrivable terminal device may hold advantages over non-backdrivable devices by allowing grip/load force coordination consistent with behaviors observed in the natural limb. Likewise, the inconclusive effect of referred haptic feedback on grasp and lift performance suggests the need for additional testing that includes adequate training for participants.


Asunto(s)
Amputados/rehabilitación , Miembros Artificiales , Retroalimentación Sensorial/fisiología , Fuerza de la Mano/fisiología , Adulto , Impedancia Eléctrica , Femenino , Antebrazo , Humanos , Masculino , Adulto Joven
8.
IEEE Trans Haptics ; 17(1): 45-51, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38252577

RESUMEN

Wearable devices increasingly incorporate vibrotactile feedback notifications to users, which are limited by the frequency-dependent response characteristics of the low-cost actuators that they employ. To increase the range and type of information that can be conveyed to users via vibration feedback, it is crucial to understand user perception of vibration cue intensity across the narrow range of frequencies that these actuators operate. In this paper, we quantify user perception of vibration cues conveyed via a linear resonant actuator embedded in a bracelet interface using two psychophysical experiments. We also experimentally determine the frequency response characteristics of the wearable device. We then compare user perceived intensity of vibration cues delivered by the bracelet when the cues undergo frequency-specific amplitude modulation based on user perception compared to modulation based on the experimental or manufacturer-reported characterization of the actuator dynamic response. For applications in which designers rely on user perception of cue amplitudes across frequencies to be equivalent, it is recommended that a perceptual calibration experiment be conducted to determine appropriate modulation factors. For applications in which only relative perceived amplitudes are important, basing amplitude modulation factors on manufacturer data or experimentally determined dynamic response characteristics of the wearable device should be sufficient.


Asunto(s)
Percepción del Tacto , Humanos , Percepción del Tacto/fisiología , Tacto/fisiología , Señales (Psicología) , Estimulación Física , Retroalimentación Sensorial , Vibración
9.
IEEE Trans Haptics ; PP2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349838

RESUMEN

Wearable haptic devices on the forearm can relay information from virtual agents, robots, and other humans while leaving the hands free. We introduce and test a new wearable haptic device that uses soft actuators to provide normal and shear force to the skin of the forearm. A rigid housing and gear motor are used to control the direction of the shear force. A 6-axis force/torque sensor, distance sensor, and pressure sensors are integrated to quantify how the soft tactor interacts with the skin. When worn by participants, the device delivered consistent shear forces of up to 0.64 N and normal forces of up to 0.56 N over distances as large as 14.3 mm. To understand cue saliency, we conducted a user study asking participants to identify linear shear directional cues in a 4-direction task and an 8-direction task with different cue speeds, travel distances, and contact patterns. Participants identified cues with longer travel distances best, with an 85.1% accuracy in the 4-direction task, and a 43.5% accuracy in the 8-direction task. Participants had a directional bias, with a preferential response in the axis towards and away from the wrist bone.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38329868

RESUMEN

Individuals who have suffered a spinal cord injury often require assistance to complete daily activities, and for individuals with tetraplegia, recovery of upper-limb function is among their top priorities. Hybrid functional electrical stimulation (FES) and exoskeleton systems have emerged as a potential solution to provide upper limb movement assistance. These systems leverage the user's own muscles via FES and provide additional movement support via an assistive exoskeleton. To date, these systems have focused on single joint movements, limiting their utility for the complex movements necessary for independence. In this paper, we extend our prior work on model predictive control (MPC) of hybrid FES-exo systems and present a multi degree of freedom (DOF) hybrid controller that uses the controller's cost function to achieve desired behavior. In studies with neurologically intact individuals, the hybrid controller is compared to an exoskeleton acting alone for movement assistance scenarios incorporating multiple degrees-of-freedom of the limb to explore the potential for exoskeleton power consumption reduction and impacts on tracking accuracy. Additionally, each scenario is explored in simulation using the models required to generate the MPC formulation. The two DOF hybrid controller implementation saw reductions in power consumption and satisfactory trajectory tracking in both the physical and simulated systems. In the four DOF implementation, the experimental results showed minor improvements for some joints of the upper limb. In simulation, we observed comparable performance as in the two DOF implementation.


Asunto(s)
Dispositivo Exoesqueleto , Procedimientos Quirúrgicos Robotizados , Robótica , Traumatismos de la Médula Espinal , Humanos , Extremidad Superior/fisiología , Robótica/métodos , Estimulación Eléctrica
11.
IEEE Trans Haptics ; 16(3): 353-364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37314909

RESUMEN

Haptic cues delivered via wearable devices have great potential to enhance a user's experience by transmitting task information and touch sensations in domains such as virtual reality, teleoperation, and prosthetics. Much is still unknown on how haptic perception, and consequently optimal haptic cue design, varies between individuals. In this work we present three contributions. First, we propose a new metric, the Allowable Stimulus Range (ASR), as a way to capture subject-specific magnitudes for a given cue, using the method of adjustments and the staircase method. Second, we present a modular, grounded, 2-DOF, haptic testbed designed to conduct psychophysical experiments in multiple control schemes and with rapidly-interchangeable haptic interfaces. Third, we demonstrate an application of the testbed and our ASR metric, together with just noticeable differences (JND) measurements, to compare perception of haptic cues delivered via position or force control schemes. Our findings show that users demonstrate higher perceptual resolution in the position-control case, though survey results suggest that force-controlled haptic cues are more comfortable. The results of this work outline a framework to define perceptible and comfortable cue magnitudes for an individual, providing the groundwork to understand haptic variability, and compare the effectiveness of different types of haptic cues.


Asunto(s)
Percepción del Tacto , Realidad Virtual , Humanos , Señales (Psicología) , Tacto , Umbral Diferencial
12.
Front Neurorobot ; 17: 1127783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091069

RESUMEN

Introduction: Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system. Methods: In this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories. Results: The MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone. Discussion: To realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities.

13.
IEEE Trans Haptics ; 16(3): 424-435, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37556331

RESUMEN

A goal of wearable haptic devices has been to enable haptic communication, where individuals learn to map information typically processed visually or aurally to haptic cues via a process of cross-modal associative learning. Neural correlates have been used to evaluate haptic perception and may provide a more objective approach to assess association performance than more commonly used behavioral measures of performance. In this article, we examine Representational Similarity Analysis (RSA) of electroencephalography (EEG) as a framework to evaluate how the neural representation of multifeatured haptic cues changes with association training. We focus on the first phase of cross-modal associative learning, perception of multimodal cues. A participant learned to map phonemes to multimodal haptic cues, and EEG data were acquired before and after training to create neural representational spaces that were compared to theoretical models. Our perceptual model showed better correlations to the neural representational space before training, while the feature-based model showed better correlations with the post-training data. These results suggest that training may lead to a sharpening of the sensory response to haptic cues. Our results show promise that an EEG-RSA approach can capture a shift in the representational space of cues, as a means to track haptic learning.


Asunto(s)
Interfaces Hápticas , Percepción del Tacto , Humanos , Tecnología Háptica , Percepción del Tacto/fisiología , Aprendizaje/fisiología , Señales (Psicología)
14.
IEEE Trans Haptics ; 16(4): 530-535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37104109

RESUMEN

Vibration is a widely used mode of haptic communication, as vibrotactile cues provide salient haptic notifications to users and are easily integrated into wearable or handheld devices. Fluidic textile-based devices offer an appealing platform for the incorporation of vibrotactile haptic feedback, as they can be integrated into clothing and other conforming and compliant wearables. Fluidically driven vibrotactile feedback has primarily relied on valves to regulate actuating frequencies in wearable devices. The mechanical bandwidth of such valves limits the range of frequencies that can be achieved, particularly in attempting to reach the higher frequencies realized with electromechanical vibration actuators ( 100 Hz). In this paper, we introduce a soft vibrotactile wearable device constructed entirely of textiles and capable of rendering vibration frequencies between 183 and 233 Hz with amplitudes ranging from 23 to 114 g. We describe our methods of design and fabrication and the mechanism of vibration, which is realized by controlling inlet pressure and harnessing a mechanofluidic instability. Our design allows for controllable vibrotactile feedback that is comparable in frequency and greater in amplitude relative to state-of-the-art electromechanical actuators while offering the compliance and conformity of fully soft wearable devices.


Asunto(s)
Percepción del Tacto , Dispositivos Electrónicos Vestibles , Humanos , Tacto/fisiología , Percepción del Tacto/fisiología , Textiles , Vibración
15.
Top Spinal Cord Inj Rehabil ; 29(Suppl): 15-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38174129

RESUMEN

Background: Despite the positive results in upper limb (UL) motor recovery after using electrical neuromodulation in individuals after cervical spinal cord injury (SCI) or stroke, there has been limited exploration of potential benefits of combining task-specific hand grip training with transcutaneous electrical spinal stimulation (TSS) for individuals with UL paralysis. Objectives: This study investigates the combinatorial effects of task-specific hand grip training and noninvasive TSS to enhance hand motor output after paralysis. Methods: Four participants with cervical SCI classified as AIS A and B and two participants with cerebral stroke were recruited in this study. The effects of cervical TSS without grip training and during training with sham stimulation were contrasted with hand grip training with TSS. TSS was applied at midline over cervical spinal cord. During hand grip training, 5 to 10 seconds of voluntary contraction were repeated at a submaximum strength for approximately 10 minutes, three days per week for 4 weeks. Signals from hand grip dynamometer along with the electromyography (EMG) activity from UL muscles were recorded and displayed as visual feedback. Results: Our case study series demonstrated that combined task-specific hand grip training and cervical TSS targeting the motor pools of distal muscles in the UL resulted in significant improvements in maximum hand grip strength. However, TSS alone or hand grip training alone showed limited effectiveness in improving grip strength. Conclusion: Task-specific hand grip training combined with TSS can result in restoration of hand motor function in paralyzed upper limbs in individuals with cervical SCI and stroke.


Asunto(s)
Traumatismos de la Médula Espinal , Accidente Cerebrovascular , Humanos , Fuerza de la Mano/fisiología , Parálisis , Extremidad Superior
16.
IEEE Trans Haptics ; 15(1): 212-221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34529574

RESUMEN

Multi-sensory wearable haptic devices are able to encode a variety of information using multiple haptic cues. However, simultaneous cues can be misperceived due to tactile masking effects. In this paper, we investigate the effect of masking on the perception of skin stretch and squeeze. We performed three experiments measuring the just-noticeable difference (JND) and the absolute threshold of skin stretch and squeeze alone and in the presence of simultaneous haptic cues. Additionally, we investigate the relative perceptual amplitudes of these haptic cues. Results indicate that the JND for a skin stretch cue increases with a masking squeeze cue, while the JND for a squeeze cue does not change with a masking stretch cue. Also, masking has a significant effect on the absolute threshold of both skin stretch and squeeze. These results suggest that the effect of masking diminishes as haptic cues become larger in amplitude. The results from the subjective equality experiment suggest a potential nonlinear relationship between perceptual magnitudes. Further testing should be carried out to investigate this relationship. Future multi-sensory devices can use these perceptual experiment findings to ensure the delivery of salient cues to users.


Asunto(s)
Estereognosis , Percepción del Tacto , Señales (Psicología) , Umbral Diferencial , Humanos , Tacto
17.
IEEE Trans Haptics ; 15(2): 382-391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34752403

RESUMEN

In many training scenarios, and in surgery in particular, feedback is provided to the trainee after the task has been performed, and the assessment is often qualitative in nature. In this paper, we demonstrate the effect of real-time objective performance feedback conveyed through a vibrotactile cue. Subjects performed a mirror-tracing task that requires coordination and dexterity similar in nature to that required in endovascular surgery. Movement smoothness, a characteristic associated with skilled and coordinated movement, was measured by spectral arc length, a frequency-domain measure of smoothness. The smoothness-based performance metric was encoded as a vibrotactile cue displayed on the user's arm. Performance on the mirror tracing task with smoothness-based feedback was compared to position-based feedback (where the subject was alerted when they moved outside the path boundary) and to a no vibrotactile feedback control condition. Subjects receiving smoothness-based feedback altered their task completion strategies, resulting in faster task completion times, but their accuracy was slightly worse overall than the other two groups. In procedures such as endovascular surgery, the reduction of procedure time that could be achieved with smoothness-based feedback training may be advantageous, despite the fact that accuracy was inferior to that observed with no feedback or position-based feedback.


Asunto(s)
Tecnología Háptica , Movimiento , Retroalimentación , Retroalimentación Sensorial , Humanos
18.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176117

RESUMEN

Spinal cord injury (SCI) affects a large number of individuals in the United States. Unfortunately, traditional neurorehabilitation therapy leaves out clinical populations with limited motor function, such as severe stroke or spinal cord injury, as they are incapable of engaging in movement therapy. To increase the numbers of individuals who may be able to participate in robotic therapy, our long-term goal is to combine two validated interventions, transcutaneous spinal stimulation (TSS) and robotics, to elicit upper limb movements during rehabilitation following SCI. To achieve this goal, it is necessary to quantify the contributions of each intervention to realizing arm movements. Electromyography is typically used to assess the response to TSS, but the robot itself offers an additional source of data since the available sensors on the robot can be used to directly assess resultant actions of the upper limb after stimulation. We explore this approach in this paper. We showed that the effects of cutaneous TSS can be observed by measuring the holding torque required by the exoskeleton to keep a user's arm in a neutral position. Further, we can identify differences in resultant action based on the location of the stimulation electrodes with respect to the dorsal roots of the spinal cord. In the future, we can use measurements from the robot to guide the action of the robot and TSS intervention.


Asunto(s)
Dispositivo Exoesqueleto , Robótica , Traumatismos de la Médula Espinal , Humanos , Robótica/métodos , Traumatismos de la Médula Espinal/rehabilitación , Torque , Extremidad Superior/fisiología
19.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176144

RESUMEN

Individuals who suffer from paralysis as a result of a spinal cord injury list restoration of arm and hand function as a top priority. FES helps restore movement using the user's own muscles, but does not produce accurate and repeatable movements necessary for many functional tasks. Robots can assist users in achieving accurate and repeatable movements, but often require bulky hardware to generate the necessary torques. We propose sharing torque requirements between a robot and FES to reduce robot torque output compared to a robot acting alone, yet maintain high accuracy. Cooperative PD and model predictive control algorithms were designed to share the control between these two torque sources. Corresponding PD and MPC algorithms that do not use FES were also designed. The control algorithms were tested with 10 able-bodied subjects. Torque and position tracking accuracy were compared when the system was commanded to follow a functional elbow flexion/extension trajectory. The robot torque required to achieve these movements was reduced for the shared control cases compared to the algorithms acting without FES. We observed a reduction in position accuracy with the MPC shared controller compared to the PD shared controller, while the MPC shared controller resulted in greater reductions in torque requirements. Both of these shared algorithms showed improvements over existing options, and can be used on any given trajectory, allowing for better transferability to functional tasks.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Codo , Estimulación Eléctrica , Humanos , Movimiento/fisiología , Torque
20.
Stud Health Technol Inform ; 163: 247-53, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21335798

RESUMEN

The use of robotic devices in rehabilitation allows therapists to administer the desired movement with the preferred level of assistance while expending minimum effort. Robotic devices have been used in recent years to enhance sensori-motor recovery of the impaired arm in persons with stroke. Despite recent recommendations for bimanual practice, robot-assisted bimanual activities are rarely explored and are limited to mirror image movements. We developed a novel parallel movement mode for the Mirror Image Movement Enabler robotic system and investigated trajectory error (TE) exhibited by healthy adults during parallel and mirror image motions to various target locations. TE values differed for parallel and mirror image motions and for certain target locations, suggesting the importance of considering these factors when developing robot-assisted bimanual activities.


Asunto(s)
Brazo/fisiología , Sistemas Hombre-Máquina , Movimiento/fisiología , Robótica/métodos , Análisis y Desempeño de Tareas , Terapia Asistida por Computador/métodos , Adulto , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA