Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 294(48): 18041-18045, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31604823

RESUMEN

Canonical Gremlin1 (GREM1) signaling involves binding to and sequestering bone morphogenetic proteins (BMPs) in the extracellular matrix, preventing the activation of cognate BMP receptor. Exquisite temporospatial control of the GREM1-BMP interaction is required during development, and perturbation of this balance leads to abnormal limb formation and defective kidney development. In addition to inhibition of BMP signaling, several other noncanonical signaling modalities of GREM1 have been postulated. Some literature reports have suggested that GREM1 can bind to and activate vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells, human kidney epithelial cells, and others. These reports suggest that the GREM1 → VEGFR2 signaling can drive angiogenesis both in vitro and in vivo We report here that, despite exhaustive attempts, we did not observe GREM1 activation of VEGFR2 in any of the cell lines reported by the above-mentioned studies. Incubation of endothelial colony-forming cells (ECFCs) or human umbilical vein endothelial cells (HUVECs) with recombinant VEGF triggered a robust increase in VEGFR2 tyrosine phosphorylation. In contrast, no VEGFR2 phosphorylation was detected when cells were incubated with recombinant GREM1 over a range of time points and concentrations. We also show that GREM1 does not interfere with VEGF-mediated VEGFR2 activation, suggesting that GREM1 does not bind with any great affinity to VEGFR2. Measurements of ECFC barrier integrity revealed that VEGF induces barrier function disruption, but recombinant human GREM1 had no effect in this assay. We believe that these results provide an important clarification of the potential interaction between GREM1 and VEGFR2 in mammalian cells.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Fosforilación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
2.
Stem Cells ; 36(6): 834-843, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29484768

RESUMEN

Myeloid angiogenic cells (MACs) promote revascularization through the paracrine release of angiogenic factors and have been harnessed as therapeutic cells for many ischemic diseases. However, their proangiogenic properties have been suggested to be diminished in diabetes. This study investigates how the diabetic milieu affects the immunophenotype and function of MACs. Both MACs isolated from diabetic conditions and healthy cells exposed to a diabetic environment were used to determine the potential of MACs as a cell therapy for diabetic-related ischemia. MACs were isolated from human peripheral blood and characterized alongside proinflammatory macrophages M (LPS + IFNγ) and proangiogenic macrophages M (IL4). Functional changes in MACs in response to high-d-glucose were assessed using an in vitro 3D-tubulogenesis assay. Phenotypic changes were determined by gene and protein expression analysis. Additionally, MACs from type 1 diabetic (T1D) patients and corresponding controls were isolated and characterized. Our evidence demonstrates MACs identity as a distinct macrophage subtype that shares M2 proangiogenic characteristics, but can be distinguished by CD163hi expression. High-d-glucose treatment significantly reduced MACs proangiogenic capacity, which was associated with a significant increase in IL1ß mRNA and protein expression. Inhibition of IL1ß abrogated the antiangiogenic effect induced by high-d-glucose. IL1ß was also significantly upregulated in MACs isolated from T1D patients with microvascular complications compared to T1D patients without microvascular complications or nondiabetic volunteers. This study demonstrates that Type 1 diabetes and diabetic-like conditions impair the proangiogenic and regenerative capacity of MACs, and this response is mediated by IL-1ß. Stem Cells 2018;36:834-843.


Asunto(s)
Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Adolescente , Adulto , Anciano , Diabetes Mellitus , Humanos , Persona de Mediana Edad , Adulto Joven
3.
Stem Cells ; 31(8): 1657-68, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23629812

RESUMEN

Harnessing outgrowth endothelial cells (OECs) for vasoreparative therapy and tissue engineering requires efficient ex vivo expansion. How such expansion impacts on OEC function is largely unknown. In this study, we show that OECs become permanently cell-cycle arrested after ex vivo expansion, which is associated with enlarged cell size, ß-galactosidase activity, DNA damage, tumor suppressor pathway activation, and significant transcriptome changes. These senescence hallmarks were coupled with low telomerase activity and telomere shortening, indicating replicative senescence. OEC senescence limited their regenerative potential by impairing vasoreparative properties in vitro and in vivo. Integrated transcriptome-proteome analysis identified inflammatory signaling pathways as major mechanistic components of the OEC senescence program. In particular, IL8 was an important facilitator of this senescence; depletion of IL8 in OECs significantly extended ex vivo lifespan, delayed replicative senescence, and enhanced function. While the ability to expand OEC numbers prior to autologous or allogeneic therapy remains a useful property, their replicative senescence and associated impairment of vasorepair needs to be considered. This study also suggests that modulation of the senescence-associated secretory phenotype could be used to optimize OEC therapy.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Interleucina-8/metabolismo , Adulto , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Senescencia Celular/fisiología , Modelos Animales de Enfermedad , Ojo/irrigación sanguínea , Sangre Fetal/citología , Técnicas de Silenciamiento del Gen , Humanos , Interleucina-8/deficiencia , Interleucina-8/genética , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Regeneración/fisiología , Transducción de Señal , Adulto Joven
4.
BMC Genomics ; 13: 357, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22849433

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are a class of small RNA molecules that regulate expression of specific mRNA targets. They can be released from cells, often encapsulated within extracellular vesicles (EVs), and therefore have the potential to mediate intercellular communication. It has been suggested that certain miRNAs may be selectively exported, although the mechanism has yet to be identified. Manipulation of the miRNA content of EVs will be important for future therapeutic applications. We therefore wished to assess which endogenous miRNAs are enriched in EVs and how effectively an overexpressed miRNA would be exported. RESULTS: Small RNA libraries from HEK293T cells and vesicles before or after transfection with a vector for miR-146a overexpression were analysed by deep sequencing. A subset of miRNAs was found to be enriched in EVs; pathway analysis of their predicted target genes suggests a potential role in regulation of endocytosis. RT-qPCR in additional cell types and analysis of publicly available data revealed that many of these miRNAs tend to be widely preferentially exported. Whilst overexpressed miR-146a was highly enriched both in transfected cells and their EVs, the cellular:EV ratios of endogenous miRNAs were not grossly altered. MiR-451 was consistently the most highly exported miRNA in many different cell types. Intriguingly, Argonaute2 (Ago2) is required for miR-451 maturation and knock out of Ago2 has been shown to decrease expression of other preferentially exported miRNAs (eg miR-150 and miR-142-3p). CONCLUSION: The global expression data provided by deep sequencing confirms that specific miRNAs are enriched in EVs released by HEK293T cells. Observation of similar patterns in a range of cell types suggests that a common mechanism for selective miRNA export may exist.


Asunto(s)
Proteínas Argonautas/genética , Endocitosis/genética , Células Endoteliales/metabolismo , MicroARNs/genética , ARN Mensajero/genética , Vesículas Transportadoras/metabolismo , Proteínas Argonautas/metabolismo , Secuencia de Bases , Línea Celular , Células Endoteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , MicroARNs/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Transfección
5.
J Cell Biochem ; 113(6): 2098-111, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22298343

RESUMEN

The retinal vascular endothelium is essential for angiogenesis and is involved in maintaining barrier selectivity and vascular tone. The aim of this study was to identify and quantify microRNAs and other small regulatory non-coding RNAs (ncRNAs) which may regulate these crucial functions. Primary bovine retinal microvascular endothelial cells (RMECs) provide a well-characterized in vitro system for studying angiogenesis. RNA extracted from RMECs was used to prepare a small RNA library for deep sequencing (Illumina Genome Analyzer). A total of 6.8 million reads were mapped to 250 known microRNAs in miRBase (release 16). In many cases, the most frequent isomiR differed from the sequence reported in miRBase. In addition, five novel microRNAs, 13 novel bovine orthologs of known human microRNAs and multiple new members of the miR-2284/2285 family were detected. Several ∼30 nucleotide sno-miRNAs were identified, with the most highly expressed being derived from snoRNA U78. Highly expressed microRNAs previously associated with endothelial cells included miR-126 and miR-378, but the most highly expressed was miR-21, comprising more than one-third of all mapped reads. Inhibition of miR-21 with an LNA inhibitor significantly reduced proliferation, migration, and tube-forming capacity of RMECs. The independence from prior sequence knowledge provided by deep sequencing facilitates analysis of novel microRNAs and other small RNAs. This approach also enables quantitative evaluation of microRNA expression, which has highlighted the predominance of a small number of microRNAs in RMECs. Knockdown of miR-21 suggests a role for this microRNA in regulation of angiogenesis in the retinal microvasculature.


Asunto(s)
Células Endoteliales/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , ARN Pequeño no Traducido/genética , Vasos Retinianos/metabolismo , Animales , Bovinos , Células Cultivadas , Perfilación de la Expresión Génica , Células HEK293 , Humanos , MicroARNs/biosíntesis , Neovascularización Fisiológica , Mapeo Nucleótido , Análisis de Secuencia de ARN
6.
Mol Med ; 17(9-10): 1045-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21670847

RESUMEN

Endothelial progenitor cells (EPCs) promote angiogenesis, and clinical trials have shown such cell therapy to be feasible for treating ischemic disease. However, clinical outcomes have been contradictory owing to the diverse range of EPC types used. We recently characterized two EPC subtypes, and identified outgrowth endothelial cells as the only EPC type with true progenitor and endothelial characteristics. By contrast, myeloid angiogenic cells (MACs) were shown to be monocytic cells without endothelial characteristics despite being widely described as "EPCs." In the current study we demonstrated that although MACs do not become endothelial cells or directly incorporate into a microvascular network, they can significantly induce endothelial tube formation in vitro and vascular repair in vivo. MAC-derived interleukin-8 (IL-8) was identified as a key paracrine factor, and blockade of IL-8 but not vascular endothelial growth factor (VEGF) prevented MAC-induced angiogenesis. Extracellular IL-8 transactivates VEGFR2 and induces phosphorylation of extracellular signal-regulated kinases. Further transcriptomic and immunophenotypic analysis indicates that MACs represent alternative activated M2 macrophages. Our findings demonstrate an unequivocal role for MACs in angiogenesis, which is linked to paracrine release of cytokines such as IL-8. We also show, for the first time, the true identity of these cells as alternative M2 macrophages with proangiogenic, antiinflammatory and pro-tissue-repair properties.


Asunto(s)
Células Endoteliales/fisiología , Interleucina-8/metabolismo , Macrófagos/fisiología , Células Mieloides/fisiología , Neovascularización Fisiológica/fisiología , Adulto , Animales , Bovinos , Células Cultivadas , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Immunoblotting , Interleucina-8/genética , Isquemia/fisiopatología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica/métodos , Vasos Retinianos/metabolismo , Vasos Retinianos/fisiología , Células Madre/metabolismo , Células Madre/fisiología , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Mol Ther Nucleic Acids ; 23: 968-981, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33614244

RESUMEN

Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.

8.
Cardiovasc Res ; 116(2): 393-405, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30937452

RESUMEN

AIMS: Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS: In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION: Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.


Asunto(s)
Células Progenitoras Endoteliales/trasplante , Isquemia/cirugía , Músculo Esquelético/irrigación sanguínea , NADPH Oxidasa 4/metabolismo , Neovascularización Fisiológica , Animales , Movimiento Celular , Células Cultivadas , Microambiente Celular , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/enzimología , Sangre Fetal/citología , Miembro Posterior , Humanos , Isquemia/enzimología , Isquemia/genética , Isquemia/fisiopatología , Ratones Endogámicos NOD , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno/metabolismo , Recuperación de la Función , Transducción de Señal
9.
Clin Med Insights Endocrinol Diabetes ; 12: 1179551419844521, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105434

RESUMEN

Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing ß cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.

10.
Front Med (Lausanne) ; 5: 273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30460233

RESUMEN

For over a decade various cell populations have been investigated for their vasoreparative potential. Cells with the capacity to promote blood vessel regeneration are commonly known as endothelial progenitor cells (EPCs); although such a definition is currently considered too simple for the complexity of cell populations involved in the reparative angiogenic process. A subset of EPCs called endothelial colony forming cells (ECFCs) have emerged as a suitable candidate for cytotherapy, primarily due to their clonogenic progenitor characteristics, unequivocal endothelial phenotype, and inherent ability to promote vasculogenesis. ECFCs can be readily isolated from human peripheral and cord blood, expanded ex vivo and used to revascularize ischemic tissues. These cells have demonstrated efficacy in several in vivo preclinical models such as the ischemic heart, retina, brain, limb, lung and kidney. This review will summarize the current pre-clinical evidence for ECFC cytotherapy and discuss their potential for clinical application.

11.
Stem Cells Transl Med ; 7(1): 59-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29164803

RESUMEN

Cell therapy using endothelial progenitors holds promise for vascular repair in ischemic retinopathies. Using a well-defined subpopulation of human cord blood-derived endothelial progenitors known as endothelial colony-forming cells (ECFCs), we have evaluated essential requirements for further development of this cell therapy targeting the ischemic retina, including dose response, delivery route, and toxicity. First, to evaluate therapeutic efficacy relating to cell dose, ECFCs were injected into the vitreous of mice with oxygen-induced retinopathy. Using angiography and histology, we found that intravitreal delivery of low dose (1 × 103 ) ECFCs was as effective as higher cell doses (1 × 104 , 1 × 105 ) in promoting vascular repair. Second, injection into the common carotid artery was tested as an alternative, systemic delivery route. Intracarotid ECFC delivery conferred therapeutic benefit which was comparable to intravitreal delivery using the same ECFC dose (1 × 105 ), although there were fewer human cells observed in the retinal vasculature following systemic delivery. Third, cell immunogenicity was evaluated by injecting ECFCs into the vitreous of healthy adult mice. Assessment of murine ocular tissues identified injected cells in the vitreous, while demonstrating integrity of the host retina. In addition, ECFCs did not invade into the retina, but remained in the vitreous, where they eventually underwent cell death within 3 days of delivery without evoking an inflammatory response. Human specific Alu sequences were not found in healthy mouse retinas after 3 days of ECFC delivery. These findings provide supportive preclinical evidence for the development of ECFCs as an efficacious cell product for ischemic retinopathies. Stem Cells Translational Medicine 2018;7:59-67.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Endoteliales/citología , Células Endoteliales/trasplante , Sangre Fetal/citología , Isquemia/terapia , Enfermedades de la Retina/terapia , Animales , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología
12.
Cardiovasc Res ; 112(3): 677-688, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27659714

RESUMEN

AIMS: Circulating angiogenic cells (CACs) promote revascularization of ischaemic tissues although their underlying mechanism of action and the consequences of delivering varying number of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation. METHODS AND RESULTS: CACs at low (2 × 105 cells/mL) and mid (2 × 106 cells/mL) cellular densities significantly enhanced endothelial cell tube formation in vitro, while high density (HD) CACs (2 × 107 cells/mL) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and HD CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the HD CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo. Importantly, our data revealed that the anti-angiogenic effect observed in HD CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to HD CACs. In addition, we confirmed that PTX3 inhibits fibroblast growth factor (FGF) 2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects. CONCLUSION: Endothelium, when exposed to HD CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischaemic disease.


Asunto(s)
Proteína C-Reactiva/metabolismo , Células Endoteliales/metabolismo , Células Progenitoras Endoteliales/metabolismo , Neovascularización Fisiológica , Componente Amiloide P Sérico/metabolismo , Adolescente , Adulto , Animales , Comunicación Autocrina , Proteína C-Reactiva/química , Proteína C-Reactiva/genética , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/trasplante , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Desnudos , Persona de Mediana Edad , Oxígeno , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Neovascularización Retiniana , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/fisiopatología , Retinopatía de la Prematuridad/cirugía , Componente Amiloide P Sérico/química , Componente Amiloide P Sérico/genética , Transducción de Señal , Transfección , Adulto Joven
13.
Stem Cell Res Ther ; 7(1): 173, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27899144

RESUMEN

BACKGROUND: Endothelial colony-forming cells (ECFCs), also termed late outgrowth endothelial cells, are a well-defined circulating endothelial progenitor cell type with an established role in vascular repair. ECFCs have clear potential for cell therapy to treat ischaemic disease, although the precise mechanism(s) underlying their response to hypoxia remains ill-defined. METHODS: In this study, we isolated ECFCs from umbilical cord blood and cultured them on collagen. We defined the response of ECFCs to 1% O2 exposure at acute and chronic time points. RESULTS: In response to low oxygen, changes in ECFC cell shape, proliferation, size and cytoskeleton phenotype were detected. An increase in the number of senescent ECFCs also occurred as a result of long-term culture in 1% O2. Low oxygen exposure altered ECFC migration and tube formation in Matrigel®. Increases in angiogenic factors secreted from ECFCs exposed to hypoxia were also detected, in particular, after treatment with placental growth factor (PlGF). Exposure of cells to agents that stabilise hypoxia-inducible factors such as dimethyloxalylglycine (DMOG) also increased PlGF levels. Conditioned medium from both hypoxia-treated and DMOG-treated cells inhibited ECFC tube formation. This effect was reversed by the addition of PlGF neutralising antibody to the conditioned medium, confirming the direct role of PlGF in this effect. CONCLUSIONS: This study deepens our understanding of the response of ECFCs to hypoxia and also identifies a novel and important role for PlGF in regulating the vasculogenic potential of ECFCs.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Hipoxia/metabolismo , Hipoxia/patología , Factor de Crecimiento Placentario/metabolismo , Hormonas Placentarias/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Colágeno/metabolismo , Medios de Cultivo Condicionados/metabolismo , Combinación de Medicamentos , Células Progenitoras Endoteliales/metabolismo , Sangre Fetal/metabolismo , Sangre Fetal/fisiología , Humanos , Laminina/metabolismo , Neovascularización Fisiológica/fisiología , Proteoglicanos/metabolismo
14.
J Diabetes Res ; 2015: 436879, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26106624

RESUMEN

The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.


Asunto(s)
Angiopatías Diabéticas/etiología , Células Progenitoras Endoteliales/metabolismo , Epigénesis Genética , Hiperglucemia/fisiopatología , Modelos Biológicos , Animales , Diferenciación Celular , Metilación de ADN , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Células Progenitoras Endoteliales/patología , Productos Finales de Glicación Avanzada/sangre , Humanos , Hiperglucemia/sangre , MicroARNs/metabolismo , Estrés Oxidativo , Nicho de Células Madre
15.
Nat Biotechnol ; 32(11): 1151-1157, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25306246

RESUMEN

The ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Madre Pluripotentes/citología , Animales , Proliferación Celular/genética , Células Endoteliales/metabolismo , Sangre Fetal/citología , Humanos , Ratones , Neuropilina-1/metabolismo , Células Madre/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
Immunobiology ; 218(11): 1370-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23932437

RESUMEN

Macrophage function is not restricted to the innate and adaptive immune responses, but also includes host defence, wound healing, angiogenesis and homeostatic processes. Within the spectrum of macrophage activation there are two extremes: M1 classically activated macrophages which have a pro-inflammatory phenotype, and M2 alternatively activated macrophages which are pro-angiogenic and anti-inflammatory. An important property of macrophages is their plasticity to switch from one phenotype to the other and they can be defined in their polarisation state at any point between the two extremes. In order to determine what stage of activation macrophages are in, it is essential to profile various phenotypic markers for their identification. This review describes the angiogenic role for myeloid cells: circulating monocytes, Tie-2 expressing monocytes (TEMs), myeloid-derived suppressor cells (MDSCs), tumour associated macrophages (TAMs), and neutrophils. Each cell type is discussed by phenotype, roles within angiogenesis and possible targets as a cell therapy. In addition, we also refer to our own research on myeloid angiogenic cells (MACs), outlining their ability to induce angiogenesis and their similarities to alternatively activated M2 macrophages. MACs significantly contribute to vascular repair through paracrine mechanisms as they lack the capacity to differentiate into endothelial cells. Since MACs also retain plasticity, phenotypic changes can occur according to disease states and the surrounding microenvironment. This pro-angiogenic potential of MACs could be harnessed as a novel cellular therapy for the treatment of ischaemic diseases, such as diabetic retinopathy, hind limb ischaemia and myocardial infarction; however, caution needs to be taken when MACs are delivered into an inflammatory milieu.


Asunto(s)
Macrófagos/inmunología , Monocitos/inmunología , Células Mieloides/inmunología , Neovascularización Patológica/inmunología , Diferenciación Celular/inmunología , Humanos , Inmunoterapia/métodos , Inflamación/inmunología , Activación de Macrófagos/inmunología , Neutrófilos/inmunología , Receptor TIE-2/biosíntesis , Receptor TIE-2/metabolismo
17.
Stem Cells Int ; 2012: 346735, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22550504

RESUMEN

Endothelial progenitor cells (EPCs) have great clinical value because they can be used as diagnostic biomarkers and as a cellular therapy for promoting vascular repair of ischaemic tissues. However, EPCs also have an additional research value in vascular disease modelling to interrogate human disease mechanisms. The term EPC is used to describe a diverse variety of cells, and we have identified a specific EPC subtype called outgrowth endothelial cell (OEC) as the best candidate for vascular disease modelling because of its high-proliferative potential and unambiguous endothelial commitment. OECs are isolated from human blood and can be exposed to pathologic conditions (forward approach) or be isolated from patients (reverse approach) in order to study vascular human disease. The use of OECs for modelling vascular disease will contribute greatly to improving our understanding of endothelial pathogenesis, which will potentially lead to the discovery of novel therapeutic strategies for vascular diseases.

18.
Stem Cell Res Ther ; 3(4): 31, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22897941

RESUMEN

Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases.


Asunto(s)
Isquemia/terapia , Trasplante de Células Madre , Células Madre/citología , Células Madre Adultas/citología , Tratamiento Basado en Trasplante de Células y Tejidos , Endotelio Vascular/citología , Humanos , Neovascularización Fisiológica , Células Madre Pluripotentes/citología
19.
Prog Retin Eye Res ; 30(3): 149-66, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21352947

RESUMEN

Retinal ischaemic disorders such as diabetic retinopathy and retinal vein occlusion are common. The hypoxia-related stimuli from oxygen-deprived neural and glial networks can drive expression of growth factors and cytokines which induce leakage from the surviving vasculature and/or pre-retinal and papillary neovascularisation. If left untreated, retinal vascular stasis, hypoxia or ischaemia can lead to macular oedema or fibro-vascular scar formation which are associated with severe visual impairment, and even blindness. Current therapies for ischaemic retinopathies include laser photocoagulation, injection of corticosteroids or VEGF-antibodies and vitreoretinal surgery, however they carry significant side effects. As an alternative approach, we propose that if reparative intra-retinal angiogenesis can be harnessed at the appropriate stage, ischaemia could be contained or reversed. This review provides evidence that reperfusion of ischaemic retina and suppression of sight-threatening sequelae is possible in both experimental and clinical settings. In particular, there is emphasis on the clinical potential for endothelial progenitor cells (EPCs) to promote vascular repair and reversal of ischaemic injury in various tissues including retina. Gathering evidence from an extensive published literature, we outline the molecular and phenotypic nature of EPCs, how they are altered in disease and provide a rationale for harnessing the vascular reparative properties of various cell sub-types. When some of the remaining questions surrounding the clinical use of EPCs are addressed, they may provide an exciting new therapeutic option for treating ischaemic retinopathies.


Asunto(s)
Retinopatía Diabética/terapia , Endotelio Vascular/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Daño por Reperfusión/terapia , Oclusión de la Vena Retiniana/terapia , Animales , Humanos , Vasos Retinianos/citología
20.
Invest Ophthalmol Vis Sci ; 51(11): 5906-13, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20554606

RESUMEN

PURPOSE: Endothelial progenitor cells (EPCs) have potential for promoting vascular repair and revascularization of ischemic retina. However, the highly heterogeneous nature of these cells causes confusion when assessing their biological functions. The purpose of this study was to provide a comprehensive comparison between the two main EPC subtypes, early EPCs (eEPCs) and outgrowth endothelial cells (OECs), and to establish the potential of OECs as a novel cell therapy for ischemic retinopathy. METHODS: Two types of human blood-derived EPCs were isolated and compared using immunophenotyping and multiple in vitro functional assays to assess interaction with retinal capillary endothelial cells and angiogenic activity. OECs were delivered intravitreally in a mouse model of ischemic retinopathy, and flat mounted retinas were examined using confocal microscopy. RESULTS: These data indicate that eEPCs are hematopoietic cells with minimal proliferative capacity that lack tube-forming capacity. By contrast, OECs are committed to an endothelial lineage and have significant proliferative and de novo tubulogenic potential. Furthermore, only OECs are able to closely interact with endothelial cells through adherens and tight junctions and to integrate into retinal vascular networks in vitro. The authors subsequently chose OECs to test a novel cell therapy approach for ischemic retinopathy. Using a murine model of retinal ischemia, they demonstrated that OECs directly incorporate into the resident vasculature, significantly decreasing avascular areas, concomitantly increasing normovascular areas, and preventing pathologic preretinal neovascularization. CONCLUSIONS: As a distinct EPC population, OECs have potential as therapeutic cells to vascularize the ischemic retina.


Asunto(s)
Modelos Animales de Enfermedad , Células Endoteliales/citología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Daño por Reperfusión/terapia , Enfermedades de la Retina/terapia , Animales , Biomarcadores/metabolismo , Capilares/citología , Separación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Células Madre Hematopoyéticas/fisiología , Humanos , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Daño por Reperfusión/patología , Enfermedades de la Retina/patología , Vasos Retinianos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA