Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813245

RESUMEN

The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.


Asunto(s)
Aprendizaje Profundo , Glioblastoma/diagnóstico por imagen , Algoritmos , Encéfalo/diagnóstico por imagen , Biología Computacional , Humanos , Procesamiento de Imagen Asistido por Computador , Medicina de Precisión , Máquina de Vectores de Soporte
2.
NPJ Precis Oncol ; 7(1): 119, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964078

RESUMEN

Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.

3.
Sci Rep ; 11(1): 19696, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608237

RESUMEN

Currently, intraoperative guidance tools used for brain tumor resection assistance during surgery have several limitations. Hyperspectral (HS) imaging is arising as a novel imaging technique that could offer new capabilities to delineate brain tumor tissue in surgical-time. However, the HS acquisition systems have some limitations regarding spatial and spectral resolution depending on the spectral range to be captured. Image fusion techniques combine information from different sensors to obtain an HS cube with improved spatial and spectral resolution. This paper describes the contributions to HS image fusion using two push-broom HS cameras, covering the visual and near-infrared (VNIR) [400-1000 nm] and near-infrared (NIR) [900-1700 nm] spectral ranges, which are integrated into an intraoperative HS acquisition system developed to delineate brain tumor tissue during neurosurgical procedures. Both HS images were registered using intensity-based and feature-based techniques with different geometric transformations to perform the HS image fusion, obtaining an HS cube with wide spectral range [435-1638 nm]. Four HS datasets were captured to verify the image registration and the fusion process. Moreover, segmentation and classification methods were evaluated to compare the performance results between the use of the VNIR and NIR data, independently, with respect to the fused data. The results reveal that the proposed methodology for fusing VNIR-NIR data improves the classification results up to 21% of accuracy with respect to the use of each data modality independently, depending on the targeted classification problem.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imágenes Hiperespectrales/métodos , Neuroimagen/métodos , Espectroscopía Infrarroja Corta/métodos , Manejo de la Enfermedad , Humanos , Procesamiento de Imagen Asistido por Computador , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA