Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Cell ; 159(5): 1200-1211, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416955

RESUMEN

Ribosomes elongate at a nonuniform rate during translation. Theoretical models and experiments disagree on the in vivo determinants of elongation rate and the mechanism by which elongation rate affects protein levels. To resolve this conflict, we measured transcriptome-wide ribosome occupancy under multiple conditions and used it to formulate a whole-cell model of translation in E. coli. Our model predicts that elongation rates at most codons during nutrient-rich growth are not limited by the intracellular concentrations of aminoacyl-tRNAs. However, elongation pausing during starvation for single amino acids is highly sensitive to the kinetics of tRNA aminoacylation. We further show that translation abortion upon pausing accounts for the observed ribosome occupancy along mRNAs during starvation. Abortion reduces global protein synthesis, but it enhances the translation of a subset of mRNAs. These results suggest a regulatory role for aminoacylation and abortion during stress, and our study provides an experimentally constrained framework for modeling translation.


Asunto(s)
Escherichia coli/fisiología , Extensión de la Cadena Peptídica de Translación , Aminoácidos/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Biosíntesis de Proteínas , Ribosomas/metabolismo
2.
Cell ; 155(6): 1396-408, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315105

RESUMEN

The cyanobacterial circadian clock generates genome-wide transcriptional oscillations and regulates cell division, but the underlying mechanisms are not well understood. Here, we show that the response regulator RpaA serves as the master regulator of these clock outputs. Deletion of rpaA abrogates gene expression rhythms globally and arrests cells in a dawn-like expression state. Although rpaA deletion causes core oscillator failure by perturbing clock gene expression, rescuing oscillator function does not restore global expression rhythms. We show that phosphorylated RpaA regulates the expression of not only clock components, generating feedback on the core oscillator, but also a small set of circadian effectors that, in turn, orchestrate genome-wide transcriptional rhythms. Expression of constitutively active RpaA is sufficient to switch cells from a dawn-like to a dusk-like expression state as well as to block cell division. Hence, complex global circadian phenotypes can be generated by controlling the phosphorylation of a single transcription factor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ritmo Circadiano , Regulación Bacteriana de la Expresión Génica , Synechococcus/genética , Relojes Circadianos , Genoma Bacteriano , Fosforilación , Regiones Promotoras Genéticas , Synechococcus/fisiología , Transcripción Genética
3.
Mol Cell ; 71(2): 229-243.e11, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029003

RESUMEN

Limitation for amino acids is thought to regulate translation in mammalian cells primarily by signaling through the kinases mTORC1 and GCN2. We find that a selective loss of arginine tRNA charging during limitation for arginine regulates translation through ribosome pausing at two of six arginine codons. Surprisingly, limitation for leucine, an essential and abundant amino acid in protein, results in little or no ribosome pausing. Chemical and genetic perturbation of mTORC1 and GCN2 signaling revealed that their robust response to leucine limitation prevents ribosome pausing, while an insufficient response to arginine limitation leads to loss of tRNA charging and ribosome pausing. Ribosome pausing decreases protein production and triggers premature ribosome termination without reducing mRNA levels. Together, our results suggest that amino acids that are not optimally sensed by the mTORC1 and GCN2 pathways still regulate translation through an evolutionarily conserved mechanism based on codon-specific ribosome pausing.


Asunto(s)
Factor 2 Eucariótico de Iniciación/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Biosíntesis de Proteínas/fisiología , Aminoácidos/metabolismo , Animales , Arginina/metabolismo , Codón/metabolismo , Leucina/metabolismo , Mamíferos/genética , Extensión de la Cadena Peptídica de Translación/genética , Extensión de la Cadena Peptídica de Translación/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell ; 67(4): 659-672.e12, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803778

RESUMEN

The endogenous circadian clock synchronizes with environmental time by appropriately resetting its phase in response to external cues. Of note, some resetting stimuli induce attenuated oscillations of clock output, which has been observed at the population-level in several organisms and in studies of individual humans. To investigate what is happening in individual cellular clocks, we studied the unicellular cyanobacterium S. elongatus. By measuring its phase-resetting responses to temperature changes, we found that population-level arrhythmicity occurs when certain perturbations cause stochastic phases of oscillations in individual cells. Combining modeling with experiments, we related stochastic phasing to the dynamical structure of the cyanobacterial clock as an oscillator and explored the physiological relevance of the oscillator structure for accurately timed rhythmicity in changing environmental conditions. Our findings and approach can be applied to other biological oscillators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano , Modelos Biológicos , Synechococcus/metabolismo , Temperatura , Adaptación Fisiológica , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Simulación por Computador , Microscopía Fluorescente , Transducción de Señal , Análisis de la Célula Individual , Procesos Estocásticos , Synechococcus/genética , Factores de Tiempo , Imagen de Lapso de Tiempo
5.
PLoS Biol ; 17(2): e3000116, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30753179

RESUMEN

Science advances through rich, scholarly discussion. More than ever before, digital tools allow us to take that dialogue online. To chart a new future for open publishing, we must consider alternatives to the core features of the legacy print publishing system, such as an access paywall and editorial selection before publication. Although journals have their strengths, the traditional approach of selecting articles before publication ("curate first, publish second") forces a focus on "getting into the right journals," which can delay dissemination of scientific work, create opportunity costs for pushing science forward, and promote undesirable behaviors among scientists and the institutions that evaluate them. We believe that a "publish first, curate second" approach with the following features would be a strong alternative: authors decide when and what to publish; peer review reports are published, either anonymously or with attribution; and curation occurs after publication, incorporating community feedback and expert judgment to select articles for target audiences and to evaluate whether scientific work has stood the test of time. These proposed changes could optimize publishing practices for the digital age, emphasizing transparency, peer-mediated improvement, and post-publication appraisal of scientific articles.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Edición , Autoria , Factor de Impacto de la Revista , Publicaciones Periódicas como Asunto , Publicaciones , Investigadores
6.
Mol Cell ; 50(2): 288-94, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23541768

RESUMEN

The cyanobacterial circadian pacemaker consists of a three-protein clock--KaiA, KaiB, and KaiC--that generates oscillations in the phosphorylation state of KaiC. Here we investigate how temporal information encoded in KaiC phosphorylation is transduced to RpaA, a transcription factor required for circadian gene expression. We show that phosphorylation of RpaA is regulated by two antagonistic histidine kinases, SasA and CikA, which are sequentially activated at distinct times by the Kai clock complex. SasA acts as a kinase toward RpaA, whereas CikA, previously implicated in clock input, acts as a phosphatase that dephosphorylates RpaA. CikA and SasA cooperate to generate an oscillation of RpaA activity that is distinct from that generated by either enzyme alone and offset from the rhythm of KaiC phosphorylation. Our observations reveal how circadian clocks can precisely control the timing of output pathways via the concerted action of two oppositely acting enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosfotransferasas/metabolismo , Proteínas Quinasas/metabolismo , Synechococcus/genética , Relojes Circadianos/genética , Ritmo Circadiano , Histidina Quinasa , Fosforilación , Proteínas Quinasas/fisiología , Procesamiento Proteico-Postraduccional , Synechococcus/enzimología
7.
Nature ; 514(7520): 117-21, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25119046

RESUMEN

A universal feature of the response to stress and nutrient limitation is transcriptional upregulation of genes that encode proteins important for survival. Under many such conditions, the overall protein synthesis level is reduced, thereby dampening the stress response at the level of protein expression. For example, during glucose starvation in Saccharomyces cerevisiae (yeast), translation is rapidly repressed, yet the transcription of many stress- and glucose-repressed genes is increased. Here we show, using ribosomal profiling and microscopy, that this transcriptionally upregulated gene set consists of two classes: one class produces messenger RNAs that are translated during glucose starvation and are diffusely localized in the cytoplasm, including many heat-shock protein mRNAs; and the other class produces mRNAs that are not efficiently translated during glucose starvation and are concentrated in foci that co-localize with P bodies and stress granules, a class that is enriched for mRNAs involved in glucose metabolism. Surprisingly, the information specifying the differential localization and protein production of these two classes of mRNA is encoded in the promoter sequence: promoter responsiveness to heat-shock factor 1 (Hsf1) specifies diffuse cytoplasmic localization and higher protein production on glucose starvation. Thus, promoter sequences can influence not only the levels of mRNAs but also the subcellular localization of mRNAs and the efficiency with which they are translated, enabling cells to tailor protein production to the environmental conditions.


Asunto(s)
Citoplasma/metabolismo , Glucosa/deficiencia , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , ARN de Hongos/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Citoplasma/genética , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas de Choque Térmico/metabolismo , Cinética , ARN de Hongos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Transcripción Genética , Regulación hacia Arriba
8.
Mol Microbiol ; 108(1): 16-31, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29357135

RESUMEN

Vipp1 is highly conserved and essential for photosynthesis, but its function is unclear as it does not participate directly in light-dependent reactions. We analyzed Vipp1 localization in live cyanobacterial cells and show that Vipp1 is highly dynamic, continuously exchanging between a diffuse fraction that is uniformly distributed throughout the cell and a punctate fraction that is concentrated at high curvature regions of the thylakoid located at the cell periphery. Experimentally perturbing the spatial distribution of Vipp1 by relocalizing it to the nucleoid causes a severe growth defect during the transition from non-photosynthetic (dark) to photosynthetic (light) growth. However, the same perturbation of Vipp1 in dark alone or light alone growth conditions causes no growth or thylakoid morphology defects. We propose that the punctuated dynamics of Vipp1 at the cell periphery in regions of high thylakoid curvature enable acquisition of photosynthetic competency, perhaps by facilitating biogenesis of photosynthetic complexes involved in light-dependent reactions of photosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fotosíntesis/genética , Synechocystis/genética , Tilacoides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Sitios Genéticos/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía por Video , Imagen Óptica , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Synechocystis/crecimiento & desarrollo , Imagen de Lapso de Tiempo
9.
Mol Cell ; 42(6): 826-36, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700227

RESUMEN

DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budding yeast transcription factor activated in response to phosphate limitation. We find that nucleosomes significantly restrict Pho4 binding. At nucleosome-depleted sites, competition from another transcription factor, Cbf1, determines Pho4 occupancy, raising the threshold for transcriptional activation in phosphate replete conditions and preventing Pho4 activation of genes outside the phosphate regulon during phosphate starvation. Pho4 binding is not sufficient for transcriptional activation-a cooperative interaction between Pho2 and Pho4 specifies genes that are activated. Combining these experimental observations, we are able to globally predict Pho4 binding and its functionality.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión , Unión Competitiva , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Nucleosomas , Transcripción Genética
10.
Proc Natl Acad Sci U S A ; 109(34): 13638-43, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869746

RESUMEN

Many cyanobacteria have been shown to harbor multiple chromosome copies per cell, yet little is known about the organization, replication, and segregation of these chromosomes. Here, we visualize individual chromosomes in the cyanobacterium Synechococcus elongatus via time-lapse fluorescence microscopy. We find that chromosomes are equally spaced along the long axis of the cell and are interspersed with another regularly spaced subcellular compartment, the carboxysome. This remarkable organization of the cytoplasm along with accurate midcell septum placement allows for near-optimal segregation of chromosomes to daughter cells. Disruption of either chromosome ordering or midcell septum placement significantly increases the chromosome partitioning error. We find that chromosome replication is both asynchronous and independent of the position of the chromosome in the cell and that spatial organization is preserved after replication. Our findings on chromosome organization, replication, and segregation in S. elongatus provide a basis for understanding chromosome dynamics in bacteria with multiple chromosomes.


Asunto(s)
Segregación Cromosómica , Cromosomas Bacterianos , Cianobacterias/genética , Synechococcus/genética , Ciclo Celular/genética , Replicación del ADN , Genética , Modelos Biológicos , Modelos Genéticos , Mutación , Probabilidad , Especificidad de la Especie , Factores de Tiempo
11.
Mol Syst Biol ; 9: 704, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24189399

RESUMEN

Numerous transcription factors (TFs) encode information about upstream signals in the dynamics of their activation, but how downstream genes decode these dynamics remains poorly understood. Using microfluidics to control the nucleocytoplasmic translocation dynamics of the budding yeast TF Msn2, we elucidate the principles that govern how different promoters convert dynamical Msn2 input into gene expression output in single cells. Combining modeling and experiments, we classify promoters according to their signal-processing behavior and reveal that multiple, distinct gene expression programs can be encoded in the dynamics of Msn2. We show that both oscillatory TF dynamics and slow promoter kinetics lead to higher noise in gene expression. Furthermore, we show that the promoter activation timescale is related to nucleosome remodeling. Our findings imply a fundamental trade-off: although the cell can exploit different promoter classes to differentially control gene expression using TF dynamics, gene expression noise fundamentally limits how much information can be encoded in the dynamics of a single TF and reliably decoded by promoters.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transporte Activo de Núcleo Celular , Proteínas de Unión al ADN/metabolismo , Cinética , Microfluídica , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
12.
Nature ; 453(7192): 246-50, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18418379

RESUMEN

Chromatin influences gene expression by restricting access of DNA binding proteins to their cognate sites in the genome. Large-scale characterization of nucleosome positioning in Saccharomyces cerevisiae has revealed a stereotyped promoter organization in which a nucleosome-free region (NFR) is present within several hundred base pairs upstream of the translation start site. Many transcription factors bind within NFRs and nucleate chromatin remodelling events which then expose other cis-regulatory elements. However, it is not clear how transcription-factor binding and chromatin influence quantitative attributes of gene expression. Here we show that nucleosomes function largely to decouple the threshold of induction from dynamic range. With a series of variants of one promoter, we establish that the affinity of exposed binding sites is a primary determinant of the level of physiological stimulus necessary for substantial gene activation, and sites located within nucleosomal regions serve to scale expression once chromatin is remodelled. Furthermore, we find that the S. cerevisiae phosphate response (PHO) pathway exploits these promoter designs to tailor gene expression to different environmental phosphate levels. Our results suggest that the interplay of chromatin and binding-site affinity provides a mechanism for fine-tuning responses to the same cellular state. Moreover, these findings may be a starting point for more detailed models of eukaryotic transcriptional control.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/genética , Genes Fúngicos/genética , Genes Reporteros/genética , Modelos Genéticos , Nucleosomas/genética , Nucleosomas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Fosfatos/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional
13.
Elife ; 132024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146380

RESUMEN

AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.


Asunto(s)
Actinas , Dendritas , Hipocampo , Plasticidad Neuronal , Polimerizacion , Receptores AMPA , Animales , Receptores AMPA/metabolismo , Actinas/metabolismo , Ratas , Plasticidad Neuronal/fisiología , Dendritas/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Transporte de Proteínas , Neuronas/metabolismo , Células Cultivadas , Exocitosis
14.
J Bacteriol ; 195(4): 665-71, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23204469

RESUMEN

The cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene expression under constant-light conditions. Class I genes are maximally expressed in the subjective dusk, whereas class II genes are maximally expressed in the subjective dawn. Here, we identify sequence features that encode the phase of circadian gene expression. We find that, for multiple genes, an ∼70-nucleotide promoter fragment is sufficient to specify class I or II phase. We demonstrate that the gene expression phase can be changed by random mutagenesis and that a single-nucleotide substitution is sufficient to change the phase. Our study provides insight into how the gene expression phase is encoded in the cyanobacterial genome.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Genes MHC Clase II/fisiología , Genes MHC Clase I/fisiología , Synechococcus/metabolismo , Secuencia de Bases , Ritmo Circadiano/efectos de la radiación , Clonación Molecular , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genes MHC Clase I/efectos de la radiación , Genes MHC Clase II/efectos de la radiación , Luz , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutación Puntual , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Synechococcus/genética , Synechococcus/efectos de la radiación
15.
BMC Genomics ; 13: 697, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23231582

RESUMEN

BACKGROUND: Inorganic phosphate is an essential nutrient required by organisms for growth. During phosphate starvation, Saccharomyces cerevisiae activates the phosphate signal transduction (PHO) pathway, leading to expression of the secreted acid phosphatase, PHO5. The fission yeast, Schizosaccharomyces pombe, regulates expression of the ScPHO5 homolog (pho1+) via a non-orthologous PHO pathway involving genetically identified positive (pho7+) and negative (csk1+) regulators. The genes induced by phosphate limitation and the molecular mechanism by which pho7+ and csk1+ function are unknown. Here we use a combination of molecular biology, expression microarrays, and chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) to characterize the role of pho7+ and csk1+ in the PHO response. RESULTS: We define the set of genes that comprise the initial response to phosphate starvation in S. pombe. We identify a conserved PHO response that contains the ScPHO5 (pho1+), ScPHO84 (SPBC8E4.01c), and ScGIT1 (SPBC1271.09) orthologs. We identify members of the Pho7 regulon and characterize Pho7 binding in response to phosphate-limitation and Csk1 activity. We demonstrate that activation of pho1+ requires Pho7 binding to a UAS in the pho1+ promoter and that Csk1 repression does not regulate Pho7 enrichment. Further, we find that Pho7-dependent activation is not limited to phosphate-starvation, as additional environmental stress response pathways require pho7+ for maximal induction. CONCLUSIONS: We provide a global analysis of the transcriptional response to phosphate limitation in S. pombe. Our results elucidate the conserved core regulon induced in response to phosphate starvation in this ascomycete distantly related to S. cerevisiae and provide a better understanding of flexibility in environmental stress response networks.


Asunto(s)
Genómica , Fosfatos/deficiencia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Perfilación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulón/genética , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/genética , Estrés Fisiológico/genética , Transcripción Genética
16.
J Am Chem Soc ; 134(33): 13535-7, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22857257

RESUMEN

Mammalian Nod2 is an intracellular protein that is implicated in the innate immune response to the bacterial cell wall and is associated with the development of Crohn's disease, Blau syndrome, and gastrointestinal cancers. Nod2 is required for an immune response to muramyl dipeptide (MDP), an immunostimulatory fragment of bacterial cell wall, but it is not known whether MDP binds directly to Nod2. We report the expression and purification of human Nod2 from insect cells. Using novel MDP self-assembled monolayers (SAMs), we provide the first biochemical evidence for a direct, high-affinity interaction between Nod2 and MDP.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/inmunología , Bacterias/inmunología , Pared Celular/inmunología , Inmunidad Innata , Proteína Adaptadora de Señalización NOD2/inmunología , Animales , Línea Celular , Clonación Molecular , Células HEK293 , Humanos , Insectos/citología , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
17.
Proc Natl Acad Sci U S A ; 106(52): 22564-8, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20018699

RESUMEN

The cyanobacterium Synechococcus elongatus PCC 7942 exhibits oscillations in mRNA transcript abundance with 24-h periodicity under continuous light conditions. The mechanism underlying these oscillations remains elusive--neither cis nor trans-factors controlling circadian gene expression phase have been identified. Here, we show that the topological status of the chromosome is highly correlated with circadian gene expression state. We also demonstrate that DNA sequence characteristics of genes that appear monotonically activated and monotonically repressed by chromosomal relaxation during the circadian cycle are similar to those of supercoiling-responsive genes in Escherichia coli. Furthermore, perturbation of superhelical status within the physiological range elicits global changes in gene expression similar to those that occur during the normal circadian cycle.


Asunto(s)
Ritmo Circadiano/genética , Genes Bacterianos , Synechococcus/genética , Synechococcus/metabolismo , Secuencia de Bases , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Cartilla de ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Regulación Bacteriana de la Expresión Génica , Estudio de Asociación del Genoma Completo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biología de Sistemas
18.
Elife ; 102021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34590578

RESUMEN

Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson's disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remain largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes and identify the abnormal accumulation of key PD-related proteins within multivesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.


Asunto(s)
Astrocitos/enzimología , Comunicación Celular , Neuronas Dopaminérgicas/enzimología , Exosomas/enzimología , Células Madre Pluripotentes Inducidas/enzimología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Células-Madre Neurales/enzimología , Enfermedad de Parkinson/enzimología , Animales , Astrocitos/ultraestructura , Atrofia , Estudios de Casos y Controles , Línea Celular , Neuronas Dopaminérgicas/patología , Endocitosis , Exosomas/genética , Exosomas/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Células-Madre Neurales/ultraestructura , Biogénesis de Organelos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología
19.
Nat Chem Biol ; 4(1): 25-32, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18059263

RESUMEN

When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Ciclinas/antagonistas & inhibidores , Fosfatos de Inositol , Proteínas Represoras/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Ensayo de Cambio de Movilidad Electroforética , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacología , Fosfatos de Inositol/fisiología , Unión Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Factores de Transcripción/antagonistas & inhibidores
20.
Bioorg Med Chem Lett ; 20(20): 6061-3, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20822907

RESUMEN

Muramyl dipeptide (MDP) is believed to interact with an innate immune receptor, Nod2. To identify the cellular receptor for MDP, we have synthesized biotinylated MDP isomers and tested the ability of these compounds to activate Nod2 in a cell-based assay. We found that the modification of MDP does not perturb its ability to activate Nod2. These tagged versions of MDP will be useful to identify the cellular receptor of the immunostimulatory molecules.


Asunto(s)
Acetilmuramil-Alanil-Isoglutamina/síntesis química , Acetilmuramil-Alanil-Isoglutamina/farmacología , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/farmacología , Proteína Adaptadora de Señalización NOD2/inmunología , Acetilmuramil-Alanil-Isoglutamina/química , Adyuvantes Inmunológicos/química , Biotinilación , Línea Celular , Humanos , Inmunidad Innata/efectos de los fármacos , Isomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA