Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Hippocampus ; 24(2): 189-203, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24108530

RESUMEN

GABAergic inhibitory interneurons control fundamental aspects of neuronal network function. Their functional roles are assumed to be defined by the identity of their input synapses, the architecture of their dendritic tree, the passive and active membrane properties and finally the nature of their postsynaptic targets. Indeed, interneurons display a high degree of morphological and physiological heterogeneity. However, whether their morphological and physiological characteristics are correlated and whether interneuron diversity can be described by a continuum of GABAergic cell types or by distinct classes has remained unclear. Here we perform a detailed morphological and physiological characterization of GABAergic cells in the dentate gyrus, the input region of the hippocampus. To achieve an unbiased and efficient sampling and classification we used knock-in mice expressing the enhanced green fluorescent protein (eGFP) in glutamate decarboxylase 67 (GAD67)-positive neurons and performed cluster analysis. We identified five interneuron classes, each of them characterized by a distinct set of anatomical and physiological parameters. Cross-correlation analysis further revealed a direct relation between morphological and physiological properties indicating that dentate gyrus interneurons fall into functionally distinct classes which may differentially control neuronal network activity.


Asunto(s)
Giro Dentado/citología , Interneuronas/clasificación , Interneuronas/fisiología , Animales , Animales Recién Nacidos , Bicuculina/análogos & derivados , Bicuculina/farmacología , Calbindina 2/metabolismo , Calbindinas/metabolismo , Análisis por Conglomerados , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Ácido Quinurénico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-23574805

RESUMEN

Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Sistema Nervioso Central/patología , Enfermedad , Humanos , Especificidad de la Especie , Ácido gamma-Aminobutírico/deficiencia
3.
Front Cell Dev Biol ; 10: 875468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568982

RESUMEN

GTPases of the Rho family are components of signaling pathways linking extracellular signals to the control of cytoskeleton dynamics. Among these, RAC1 plays key roles during brain development, ranging from neuronal migration to neuritogenesis, synaptogenesis, and plasticity. RAC1 activity is positively and negatively controlled by guanine nucleotide exchange factors (GEFs), guanosine nucleotide dissociation inhibitors (GDIs), and GTPase-activating proteins (GAPs), but the specific role of each regulator in vivo is poorly known. ARHGAP15 is a RAC1-specific GAP expressed during development in a fraction of migrating cortical interneurons (CINs) and in the majority of adult CINs. During development, loss of ARHGAP15 causes altered directionality of the leading process of tangentially migrating CINs, along with altered morphology in vitro. Likewise, time-lapse imaging of embryonic CINs revealed a poorly coordinated directional control during radial migration, possibly due to a hyper-exploratory behavior. In the adult cortex, the observed defects lead to subtle alteration in the distribution of CALB2-, SST-, and VIP-positive interneurons. Adult Arhgap15-knock-out mice also show reduced CINs intrinsic excitability, spontaneous subclinical seizures, and increased susceptibility to the pro-epileptic drug pilocarpine. These results indicate that ARHGAP15 imposes a fine negative regulation on RAC1 that is required for morphological maturation and directional control during CIN migration, with consequences on their laminar distribution and inhibitory function.

4.
Neuron ; 54(1): 59-72, 2007 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-17408578

RESUMEN

Sodium (Na) homeostasis is crucial for life, and Na levels in body fluids are constantly monitored in the brain. The subfornical organ (SFO) is the center of the sensing responsible for the control of salt-intake behavior, where Na(x) channels are expressed in specific glial cells as the Na-level sensor. Here, we show direct interaction between Na(x) channels and alpha subunits of Na(+)/K(+)-ATPase, which brings about Na-dependent activation of the metabolic state of the glial cells. The metabolic enhancement leading to extensive lactate production was observed in the SFO of wild-type mice, but not of the Na(x)-knockout mice. Furthermore, lactate, as well as Na, stimulated the activity of GABAergic neurons in the SFO. These results suggest that the information on a physiological increase of the Na level in body fluids sensed by Na(x) in glial cells is transmitted to neurons by lactate as a mediator to regulate neural activities of the SFO.


Asunto(s)
Encéfalo/metabolismo , Lactatos/metabolismo , Neuroglía/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Canales de Sodio/fisiología , Sodio/metabolismo , Animales , Encéfalo/citología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Glioma , Glucosa/metabolismo , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Isoenzimas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ouabaína/farmacología , Ratas , Órganos de los Sentidos/citología , Órganos de los Sentidos/fisiología , Sodio/farmacología , Canales de Sodio/deficiencia , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Transfección
5.
J Neurosci ; 30(3): 1185-96, 2010 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-20089927

RESUMEN

Within glomeruli, the initial sites of synaptic integration in the olfactory pathway, olfactory sensory axons terminate on dendrites of projection and juxtaglomerular (JG) neurons. JG cells form at least two major circuits: the classic intraglomerular circuit consisting of external tufted (ET) and periglomerular (PG) cells and an interglomerular circuit comprised of the long-range connections of short axon (SA) cells. We examined the projections and the synaptic inputs of identified JG cell chemotypes using mice expressing green fluorescent protein (GFP) driven by the promoter for glutamic acid decarboxylase (GAD) 65 kDa, 67 kDa, or tyrosine hydroxylase (TH). Virtually all (97%) TH+ cells are also GAD67+ and are thus DAergic-GABAergic neurons. Using a combination of retrograde tracing, whole-cell patch-clamp recording, and single-cell three-dimensional reconstruction, we show that different JG cell chemotypes contribute to distinct microcircuits within or between glomeruli. GAD65+ GABAergic PG cells ramify principally within one glomerulus and participate in uniglomerular circuits. DAergic-GABAergic cells have extensive interglomerular projections. DAergic-GABAergic SA cells comprise two subgroups. One subpopulation contacts 5-12 glomeruli and is referred to as "oligoglomerular." Approximately one-third of these oligoglomerular DAergic SA cells receive direct olfactory nerve (ON) synaptic input, and the remaining two-thirds receive input via a disynaptic ON-->ET-->SA circuit. The second population of DAergic-GABAergic SA cells also disynaptic ON input and connect tens to hundreds of glomeruli in an extensive "polyglomerular" network. Although DAergic JG cells have traditionally been considered PG cells, their interglomerular connections argue that they are more appropriately classified as SA cells.


Asunto(s)
Axones/fisiología , Vías Olfatorias/citología , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/citología , Aminoácidos/metabolismo , Animales , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/metabolismo , Técnicas de Placa-Clamp/métodos , Células Receptoras Sensoriales/metabolismo , Estilbamidinas/metabolismo , Tirosina 3-Monooxigenasa/genética
6.
Nat Neurosci ; 10(12): 1559-68, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17965710

RESUMEN

Agonists of GABA(B) receptors exert a bi-directional effect on the activity of dopamine (DA) neurons of the ventral tegmental area, which can be explained by the fact that coupling between GABA(B) receptors and G protein-gated inwardly rectifying potassium (GIRK) channels is significantly weaker in DA neurons than in GABA neurons. Thus, low concentrations of agonists preferentially inhibit GABA neurons and thereby disinhibit DA neurons. This disinhibition might confer reinforcing properties on addictive GABA(B) receptor agonists such as gamma-hydroxybutyrate (GHB) and its derivatives. Here we show that, in DA neurons of mice, the low coupling efficiency reflects the selective expression of heteromeric GIRK2/3 channels and is dynamically modulated by a member of the regulator of G protein signaling (RGS) protein family. Moreover, repetitive exposure to GHB increases the GABA(B) receptor-GIRK channel coupling efficiency through downregulation of RGS2. Finally, oral self-administration of GHB at a concentration that is normally rewarding becomes aversive after chronic exposure. On the basis of these results, we propose a mechanism that might underlie tolerance to GHB.


Asunto(s)
Dopamina/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Neuronas/fisiología , Proteínas RGS/metabolismo , Receptores de GABA-A/fisiología , Área Tegmental Ventral/citología , Animales , Animales Recién Nacidos , Baclofeno/farmacología , Compuestos de Bario/farmacología , Conducta Animal/efectos de los fármacos , Cloruros/farmacología , Relación Dosis-Respuesta a Droga , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/ultraestructura , Agonistas del GABA/farmacología , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Neuronas/ultraestructura , Técnicas de Placa-Clamp/métodos , Oxibato de Sodio/farmacología , Factores de Transcripción/genética
7.
J Neurosci ; 29(21): 7079-91, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19474334

RESUMEN

In most CNS regions, the variety of inhibitory interneurons originates from separate pools of progenitors residing in discrete germinal domains, where they become committed to specific phenotypes and positions during their last mitosis. We show here that GABAergic interneurons of the rodent cerebellum are generated through a different mechanism. Progenitors for these interneurons delaminate from the ventricular neuroepithelium of the embryonic cerebellar primordium and continue to proliferate in the prospective white matter during late embryonic and postnatal development. Young postmitotic interneurons do not migrate immediately to their final destination, but remain in the prospective white matter for several days. The different interneuron categories are produced according to a continuous inside-out positional sequence, and cell identity and laminar placement in the cerebellar cortex are temporally related to birth date. However, terminal commitment does not occur while precursors are still proliferating, and postmitotic cells heterochronically transplanted to developing cerebella consistently adopt host-specific phenotypes and positions. However, solid grafts of prospective white matter implanted into the adult cerebellum, when interneuron genesis has ceased, produce interneuron types characteristic of the donor age. Therefore, specification of cerebellar GABAergic interneurons occurs through a hitherto unknown process, in which postmitotic neurons maintain broad developmental potentialities and their phenotypic choices are dictated by instructive cues provided by the microenvironment of the prospective white matter. Whereas in most CNS regions the repertoire of inhibitory interneurons is produced by recruiting precursors from different origins, in the cerebellum it is achieved by creating phenotypic diversity from a single source.


Asunto(s)
Cerebelo/citología , Interneuronas/fisiología , Fenotipo , Ácido gamma-Aminobutírico/metabolismo , Actinas/genética , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina , Recuento de Células , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular , Proliferación Celular , Cerebelo/embriología , Cerebelo/crecimiento & desarrollo , Embrión de Mamíferos , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Interneuronas/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Factor de Transcripción PAX2/genética , Ratas , Ratas Wistar , Trasplante de Células Madre
8.
J Neurosci ; 29(5): 1300-11, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19193877

RESUMEN

Migrating neurons are thought to travel from their origin near the ventricle to distant territories along stereotypical pathways by detecting environmental cues in the extracellular milieu. Here, we report a novel mode of neuronal migration that challenges this view. We performed long-term, time-lapse imaging of medial ganglionic eminence (MGE)-derived cortical interneurons tangentially migrating in the marginal zone (MZ) in flat-mount cortices. We find that they exhibit a diverse range of behaviors in terms of the rate and direction of migration. Curiously, a predominant population of these neurons repeatedly changes its direction of migration in an unpredictable manner. Trajectories of migration vary from one neuron to another. The migration of individual cells lasts for long periods, sometimes up to 2 d. Theoretical analyses reveal that these behaviors can be modeled by a random walk. Furthermore, MZ cells migrate from the cortical subventricular zone to the cortical plate, transiently accumulating in the MZ. These results suggest that MGE-derived cortical interneurons, once arriving at the MZ, are released from regulation by guidance cues and initiate random walk movement, which potentially contributes to their dispersion throughout the cortex.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Interneuronas/citología , Interneuronas/fisiología , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Quimiocina CXCL12/genética , Técnicas de Sustitución del Gen , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Distribución Aleatoria , Factores de Tiempo
9.
J Neurosci ; 29(34): 10520-32, 2009 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-19710305

RESUMEN

Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly because of difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labeled inhibitory neurons and nearby "shadowed" excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. In contrast, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Corteza Visual/citología , Campos Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Biofisica , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal/métodos , Técnicas de Placa-Clamp/métodos , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Prostaglandinas Sintéticas/metabolismo , Percepción Espacial/fisiología , Vías Visuales/fisiología
10.
J Neurosci ; 29(23): 7607-18, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19515929

RESUMEN

Ca2+/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) is an essential mediator of activity-dependent synaptic plasticity that possesses multiple protein functions. So far, the autophosphorylation site-mutant mice targeted at T286 and at T305/306 have demonstrated the importance of the autonomous activity and Ca2+/calmodulin-binding capacity of CaMKIIalpha, respectively, in the induction of long-term potentiation (LTP) and hippocampus-dependent learning. However, kinase activity of CaMKIIalpha, the most essential enzymatic function, has not been genetically dissected yet. Here, we generated a novel CaMKIIalpha knock-in mouse that completely lacks its kinase activity by introducing K42R mutation and examined the effects on hippocampal synaptic plasticity and behavioral learning. In homozygous CaMKIIalpha (K42R) mice, kinase activity was reduced to the same level as in CaMKIIalpha-null mice, whereas CaMKII protein expression was well preserved. Tetanic stimulation failed to induce not only LTP but also sustained dendritic spine enlargement, a structural basis for LTP, at the Schaffer collateral-CA1 synapse, whereas activity-dependent postsynaptic translocation of CaMKIIalpha was preserved. In addition, CaMKIIalpha (K42R) mice showed a severe impairment in inhibitory avoidance learning, a form of memory that is dependent on the hippocampus. These results demonstrate that kinase activity of CaMKIIalpha is a common critical gate controlling structural, functional, and behavioral expression of synaptic memory.


Asunto(s)
Reacción de Prevención/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/enzimología , Hipocampo/enzimología , Potenciación a Largo Plazo/fisiología , Neuronas/enzimología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación Missense , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/enzimología , Sinapsis/fisiología
11.
J Physiol ; 588(Pt 15): 2769-87, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530116

RESUMEN

Thalamocortical afferents innervate both excitatory and inhibitory cells, the latter in turn producing disynaptic feedforward inhibition, thus creating fast excitation-inhibition sequences in the cortical cells. Since this inhibition is disynaptic, the time lag of the excitation-inhibition sequence could be approximately 2-3 ms, while it is often as short as only slightly above 1 ms; the mechanism and function of such fast IPSPs are not fully understood. Here we show that thalamic activation of inhibitory neurons precedes that of excitatory neurons, due to increased conduction velocity of thalamic axons innervating inhibitory cells. Developmentally, such latency differences were seen only after the end of the second postnatal week, prior to the completion of myelination of the thalamocortical afferent. Furthermore, destroying myelination failed to extinguish the latency difference. Instead, axons innervating inhibitory cells had consistently lower threshold, indicating they had larger diameter, which is likely to underlie the differential conduction velocity. Since faster activation of GABAergic neurons from the thalamus can not only curtail monosynaptic EPSPs but also make disynaptic ISPSs precede disynaptic EPSPs, such suppression theoretically enables a temporal separation of thalamically driven mono- and disynaptic EPSPs, resulting in spike sequences of 'L4 leading L2/3'. By recording L4 and L2/3 cells simultaneously, we found that suppression of IPSPs could lead to deterioration of spike sequences. Thus, from the end of the second postnatal week, by activating GABAergic neurons prior to excitatory neurons from the thalamus, fast feedforward disynaptic suppression on postsynaptic cells may play a role in establishing the spike sequences of 'L4 leading L2/3 cells'.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Cerebral/fisiología , Inhibición Neural/fisiología , Tálamo/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiología
12.
J Neurophysiol ; 104(2): 896-901, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20519578

RESUMEN

Only some taste cells fire action potentials in response to sapid stimuli. Type II taste cells express many taste transduction molecules but lack well-elaborated synapses, bringing into question the functional significance of action potentials in these cells. We examined the dependence of adenosine triphosphate (ATP) transmitter release from taste cells on action potentials. To identify type II taste cells we used mice expressing a green fluorescence protein (GFP) transgene from the alpha-gustducin promoter. Action potentials were recorded by an electrode basolaterally attached to a single GFP-positive taste cell. We monitored ATP release from gustducin-expressing taste cells by collecting the electrode solution immediately after tastant-stimulated action potentials and using a luciferase assay to quantify ATP. Stimulation of gustducin-expressing taste cells with saccharin, quinine, or glutamate on the apical membrane increased ATP levels in the electrode solution; the amount of ATP depended on the firing rate. Increased spontaneous firing rates also induced ATP release from gustducin-expressing taste cells. ATP release from gustducin-expressing taste cells was depressed by tetrodotoxin and inhibited below the detection limit by carbenoxolone. Our data support the hypothesis that action potentials in taste cells responsive to sweet, bitter, or umami tastants enhance ATP release through pannexin 1, not connexin-based hemichannels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Papilas Gustativas/citología , Papilas Gustativas/fisiología , Gusto/fisiología , Transducina/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Benzamidinas/farmacología , Carbenoxolona/farmacología , Relación Dosis-Respuesta a Droga , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Quinina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Glutamato de Sodio/farmacología , Edulcorantes/farmacología , Gusto/efectos de los fármacos , Papilas Gustativas/efectos de los fármacos , Tetrodotoxina/farmacología , Transducina/genética
13.
Cereb Cortex ; 19(8): 1857-69, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19037081

RESUMEN

Projection neurons and interneurons populate the cerebral cortex in a layer-specific manner. Here, we studied the role of Cyclin-dependent kinase 5 (Cdk5) and its activator p35 in cortical interneuron migration and disposition in the cortex. We found that mice lacking p35 (p35(-/-)) show accumulation of interneurons in the upper part of the cortex. We also observed an inverted distribution of both early- and late-born interneurons, with the former showing a preference for the upper and the latter for the lower aspects of the cortex. We investigated the causes of the altered laminar organization of interneurons in p35(-/-) mice and found a cell-autonomous delay in their tangential migration that may prevent them from reaching correct positions. Incomplete splitting of the preplate in p35(-/-) mice, which causes accumulation of cells in the superficial layer and defects in the "inward" and "outward" components of their radial movement, may also account for the altered final arrangement of interneurons. We, therefore, propose that p35/Cdk5 plays a key role in guiding cortical interneurons to their final positions in the cortex.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Interneuronas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Animales , Recuento de Células , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/citología
14.
Cereb Cortex ; 19(4): 861-75, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18701438

RESUMEN

The normal formation and function of the mammalian cerebral cortex depend on the positioning of its neurones, which occurs in a highly organized, layer-specific manner. The correct morphology and movement of neurones rely on synchronized regulation of their actin filaments and microtubules. The p21-activated kinase (Pak1), a key cytoskeletal regulator, controls neuronal polarization, elaboration of axons and dendrites, and the formation of dendritic spines. However, its in vivo role in the developing nervous system is unclear. We have utilized in utero electroporation into mouse embryo cortices to reveal that both loss and gain of Pak1 function affect radial migration of projection neurones. Overexpression of hyperactivated Pak1 predominantly caused neurones to arrest in the intermediate zone (IZ) with apparently misoriented and disorganized leading projections. Loss of Pak1 disrupted the morphology of migrating neurones, which accumulated in the IZ and deep cortical layers. Unexpectedly, a significant number of neurones with reduced Pak1 expression aberrantly entered into the normally cell-sparse marginal zone, suggesting their inability to cease migrating that may be due to their impaired dissociation from radial glia. Our findings reveal the in vivo importance of temporal and spatial regulation of the Pak1 kinase during key stages of cortical development.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/enzimología , Neuronas/enzimología , Quinasas p21 Activadas/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Chlorocebus aethiops , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/fisiología , Ratones , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo , Ratas , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/biosíntesis
15.
Neuron ; 48(6): 1025-37, 2005 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-16364905

RESUMEN

The amygdala is under inhibitory control from the cortex through the activation of local GABAergic interneurons. This inhibition is greatly diminished during heightened emotional states due to dopamine release. However, dopamine excites most amygdala interneurons, suggesting that this dopaminergic gate may be mediated by an unknown subpopulation of interneurons. We hypothesized that this gate is mediated by paracapsular intercalated cells, a subset of interneurons that are innervated by both cortical and mesolimbic dopaminergic afferents. Using transgenic mice that express GFP in GABAergic interneurons, we show that paracapsular cells form a network surrounding the basolateral complex of the amygdala. We found that they provide feedforward inhibition into the basolateral and the central amygdala. Dopamine hyperpolarized paracapsular cells through D1 receptors and substantially suppressed their excitability, resulting in a disinhibition of the basolateral and central nuclei. Suppression of the paracapsular system by dopamine provides a compelling neural mechanism for the increased affective behavior observed during stress or other hyperdopaminergic states.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Dopamina/metabolismo , Interneuronas/metabolismo , Inhibición Neural/fisiología , Vías Nerviosas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Forma de la Célula/fisiología , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Dopamina/farmacología , Emociones/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Ratones , Ratones Noqueados , Ratones Transgénicos , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Estrés Fisiológico/metabolismo , Estrés Fisiológico/fisiopatología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
16.
J Neurosci ; 28(4): 816-27, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18216190

RESUMEN

In slice preparations, electrical stimulation of the superficial gray layer (SGS) of the superior colliculus (SC) induces EPSC bursts in neurons in the intermediate gray layer (SGI) when GABA(A) receptor (GABA(A)R)-mediated inhibition is reduced. This preparation has been used as a model system to study signal processing involved in execution of short-latency orienting responses to visual stimuli such as saccadic eye movements. In the present study, we investigated the role of GABA(B) receptors (GABA(B)Rs) in modulating signal transmission in the above pathway with whole-cell patch-clamp recordings in SC slices obtained from GAD67-GFP knock-in mice. Perfusion of the slice with the GABA(B)R antagonist CGP52432 (CGP) greatly prolonged the duration of the EPSC bursts. Local application of CGP to the SGS but not to the SGI produced similar effects. Because SGS stimulation elicited bursts in GABAergic neurons in the SGS when GABA(A)Rs were blocked, these results suggest that GABA released after bursts activates GABA(B)Rs in the SGS, leading to reduced burst duration. We found both postsynaptic and presynaptic actions of GABA(B)Rs in the SGS; activation of postsynaptic GABA(B)Rs induced outward currents in narrow-field vertical cells, whereas it caused shunting inhibition in distal dendrites in wide-field vertical cells. On the other hand, activation of presynaptic GABA(B)Rs suppressed excitatory synaptic transmissions to non-GABAergic neurons in the SGS. These results indicate that synaptically released GABA can activate both presynaptic and postsynaptic GABA(B)Rs in the SGS and limit the duration of burst responses in the SC local circuit.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Terminales Presinápticos/fisiología , Receptores de GABA-B/fisiología , Colículos Superiores/fisiología , Animales , Agonistas de Receptores GABA-B , Ratones , Ratones Endogámicos C57BL , Colículos Superiores/citología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
17.
J Neurosci ; 28(8): 1854-64, 2008 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-18287502

RESUMEN

Consumption of alcohol (ethanol) during pregnancy can lead to developmental defects in the offspring, the most devastating being the constellation of symptoms collectively referred to as fetal alcohol syndrome (FAS). In the brain, a hallmark of FAS is abnormal cerebral cortical morphology consistent with insult during corticogenesis. Here, we report that exposure to a relatively low level of ethanol in utero (average maternal and fetal blood alcohol level of 25 mg/dl) promotes premature tangential migration into the cortical anlage of primordial GABAergic interneurons, including those originating in the medial ganglionic eminence (MGE). This ethanol-induced effect was evident in vivo at embryonic day 14.5 (E14.5) in GAD67 knock-in and BAC-Lhx6 embryos, as well as in vitro in isotypic telencephalic slice cocultures obtained from E14.5 embryos exposed to ethanol in utero. Analysis of heterotypic cocultures indicated that both cell-intrinsic and -extrinsic factors contribute to the aberrant migratory profile of MGE-derived cells. In this light, we provide evidence for an interaction between ethanol exposure in utero and the embryonic GABAergic system. Exposure to ethanol in utero elevated the ambient level of GABA and increased the sensitivity to GABA of MGE-derived cells. Our results uncovered for the first time an effect of ethanol consumption during pregnancy on the embryonic development of GABAergic cortical interneurons. We propose that ethanol exerts its effect on the tangential migration of GABAergic interneurons extrinsically by modulating extracellular levels of GABA and intrinsically by altering GABA(A) receptor function.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/embriología , Etanol/administración & dosificación , Interneuronas/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Consumo de Bebidas Alcohólicas/efectos adversos , Animales , Movimiento Celular/fisiología , Corteza Cerebral/citología , Técnicas de Cocultivo , Etanol/toxicidad , Femenino , Feto , Interneuronas/citología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Factores de Tiempo
18.
J Neurosci ; 28(48): 12956-68, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036989

RESUMEN

Gamma frequency (30-100 Hz) oscillations in the mature cortex underlie higher cognitive functions. Fast signaling in GABAergic interneuron networks plays a key role in the generation of these oscillations. During development of the rodent brain, gamma activity appears at the end of the first postnatal week, but frequency and synchrony reach adult levels only by the fourth week. However, the mechanisms underlying the maturation of gamma activity are unclear. Here we demonstrate that hippocampal basket cells (BCs), the proposed cellular substrate of gamma oscillations, undergo marked changes in their morphological, intrinsic, and synaptic properties between postnatal day 6 (P6) and P25. During maturation, action potential duration, propagation time, duration of the release period, and decay time constant of IPSCs decreases by approximately 30-60%. Thus, postnatal development converts BCs from slow into fast signaling devices. Computational analysis reveals that BC networks with young intrinsic and synaptic properties as well as reduced connectivity generate oscillations with moderate coherence in the lower gamma frequency range. In contrast, BC networks with mature properties and increased connectivity generate highly coherent activity in the upper gamma frequency band. Thus, late postnatal maturation of BCs enhances coherence in neuronal networks and will thereby contribute to the development of cognitive brain functions.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Interneuronas/metabolismo , Inhibición Neural/fisiología , Neurogénesis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Relojes Biológicos/fisiología , Sincronización Cortical , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Técnicas de Cultivo de Órganos , Tiempo de Reacción/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/biosíntesis
19.
J Physiol ; 587(Pt 18): 4425-39, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19622604

RESUMEN

Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.


Asunto(s)
Umbral Diferencial/fisiología , Umbral Sensorial/fisiología , Papilas Gustativas/citología , Papilas Gustativas/fisiología , Percepción del Gusto/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Gusto
20.
Chem Senses ; 34(3): 253-67, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19179538

RESUMEN

We examined whether salt taste and/or abdominal illness were dealt within different subnuclei in the parabrachial nucleus (PBN) in mice, using retrograde tracing methods and c-Fos-like immunoreactivity (FLI) detection procedures. Some PBN subnuclei have distinct functions and receive various sensory inputs from the nucleus of the solitary tract (NTS) and other areas and relay them to the higher order nuclei such as the thalamus. The afferent-dependent pattern of FLI has been investigated in the PBN. However, it is unclear in which PBN subnuclei the tastants induce c-Fos, or whether PBN subnuclei process taste inputs separately from other inputs, or integrate them. After the tracer injections into the thalamic taste relay, the retrograde labeled cells revealed the taste relay cells in the PBN at the boundary with the superior cerebellar peduncle of both the inner part of the external lateral subnucleus and the medial subnucleus and in the waist area. On the other hand, NaCl intake induced intense FLI in the dorsal lateral subnucleus, whereas LiCl intake yielded intense FLI in both the dorsal lateral subnucleus and the outer part of the external lateral subnucleus. Thus, the present findings that subnuclei relaying taste information to the thalamus do not yield FLI in response to salt taste and abdominal illness indicate that they lack FLI yielding pathways or that they are independent from the subnuclei processing salt taste and visceral information via c-Fos in mice.


Asunto(s)
Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sales (Química)/administración & dosificación , Gusto/fisiología , Núcleos Talámicos/fisiología , Animales , Masculino , Ratones , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Gusto/efectos de los fármacos , Núcleos Talámicos/citología , Núcleos Talámicos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA