Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soc Cogn Affect Neurosci ; 16(1-2): 103-116, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-32685971

RESUMEN

Brain-to-brain synchrony has been proposed as an important mechanism underlying social interaction. While first findings indicate that it may be modulated in children with autism spectrum disorder (ASD), no study to date has investigated the influence of different interaction partners and task characteristics. Using functional near-infrared spectroscopy hyperscanning, we assessed brain-to-brain synchrony in 41 male typically developing (TD) children (8-18 years; control sample), as well as 18 children with ASD and age-matched TD children (matched sample), while performing cooperative and competitive tasks with their parents and an adult stranger. Dyads were instructed either to respond jointly in response to a target (cooperation) or to respond faster than the other player (competition). Wavelet coherence was calculated for oxy- and deoxyhemoglobin brain signals. In the control sample, a widespread enhanced coherence was observed for parent-child competition, and a more localized coherence for parent-child cooperation in the frontopolar cortex. While behaviorally, children with ASD showed a lower motor synchrony than children in the TD group, no significant group differences were observed on the neural level. In order to identify biomarkers for typical and atypical social interactions in the long run, more research is needed to investigate the neurobiological underpinnings of reduced synchrony in ASD.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adolescente , Adulto , Mapeo Encefálico , Niño , Humanos , Masculino , Padres , Espectroscopía Infrarroja Corta
2.
Neuropsychopharmacology ; 44(4): 749-756, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30390065

RESUMEN

Reduced social motivation is a hallmark of individuals with autism spectrum disorders (ASDs). Although the exact neural mechanisms are unclear, oxytocin has been shown to enhance motivation and attention to social stimuli, suggesting a potential to augment social reinforcement learning as the central mechanism of behavioral interventions in ASD. We tested how reinforcement learning in social contexts and associated reward prediction error (RPE) signals in the nucleus accumbens (NAcc) were modulated by intranasal oxytocin. Male adults with a childhood diagnosis of ASD (n = 15) and healthy controls (n = 24; aged 18-26 years) performed a probabilistic reinforcement learning task during functional magnetic resonance imaging in a single-center (research center in Germany), randomized double-blind, placebo-controlled cross-over trial. The interventions were intranasal oxytocin (Syntocinon®, Novartis; 10 puffs = 20 international units (IUs) per treatment) and placebo spray. Using computational modeling of behavioral data, trial-by-trial RPE signals were assessed and related to brain activation in NAcc during reinforcing feedback in social and non-social contexts. The order of oxytocin/placebo was randomized for 60 participants. Twenty-one participants were excluded from analyses, leaving 39 for the final analysis. Behaviorally, individuals with ASD showed enhanced learning under oxytocin when the learning target as well as feedback was social as compared to non-social (social vs. non-social target: 87.09% vs. 71.29%, 95% confidence interval (CI): 7.28-24.33, p = .003; social vs. non-social feedback: 81.00% vs. 71.29%, 95% CI: 2.81-16.61, p = .027). Correspondingly, oxytocin enhanced the correlation of the RPE signal with NAcc activation during social (vs. non-social) feedback in ASD (3.48 vs. -1.12, respectively, 95% CI: 2.98-6.22, p = .000), whereas in controls, this effect was found in the placebo condition (2.90 vs. -1.14, respectively, 95% CI: 1.07-7.01, p = .010). In ASD, a similar pattern emerged when the learning target was social (3.00 vs. -0.64, respectively, 95% CI: -0.13 to 7.41, p = .057), whereas controls showed a reduced correlation for social learning targets under oxytocin (-0.70 vs. 2.72, respectively, 95% CI: -5.86 to 0.98, p = .008). The current data suggest that intranasal oxytocin has the potential to enhance social reinforcement learning in ASD. Future studies are warranted that investigate whether oxytocin can potentiate social learning when combined with behavioral therapies, resulting in greater treatment benefits than traditional behavior-only approaches.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/psicología , Núcleo Accumbens/fisiología , Oxitocina/farmacología , Refuerzo Social , Aprendizaje Social/efectos de los fármacos , Administración Intranasal , Adolescente , Adulto , Método Doble Ciego , Retroalimentación Psicológica , Humanos , Imagen por Resonancia Magnética , Masculino , Núcleo Accumbens/efectos de los fármacos , Oxitocina/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA