Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Thorax ; 76(2): 152-160, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33298584

RESUMEN

BACKGROUND: Interstitial lung abnormalities (ILA) occur in around 10% of subjects over 60 years, and are associated with a higher rate of all-cause mortality. The pathogenic mechanisms are unclear, and the putative contribution of alterations in the immune response has not been explored. Normal ageing is associated with immune deficiencies, including Naïve T-cell decrease and greater expression of the proliferative-limiting, co-inhibitory receptor killer-cell lectin-like receptor G1 (KLRG1). OBJECTIVE: To evaluate the frequency and activation state of different T-cell subpopulations in ILA subjects. METHODS: Peripheral blood mononuclear cells were obtained from 15 individuals with ILA, 21 age-matched controls and 28 healthy young subjects. T-cells phenotype was characterised by flow cytometry, and proliferation and activation by stimulation with anti-CD3/anti-CD28 or phorbol myristate acetate/ionomycin; KLRG1 isoforms were evaluated by western blot and cytokines were quantified by ELISA and Multiplex. RESULTS: A significant increase of Naïve CD4+T cells together with a decrease of central and effector memory CD4+T cells was observed in ILA compared with age-matched controls. CD4+T cells from ILA subjects exhibited greater basal proliferation, which raised after anti-CD3/anti-CD28 stimulation. Additionally, a significant increase in the levels of interleukin-6 and interferon gamma was observed in isolated CD4+T cells and plasma of ILA subjects. They also displayed fewer KLRG1+/CD4+T cells with an increase of circulating E-cadherin, the ligand of KLRG1+. No changes were observed with CD8+T cell subsets. CONCLUSION: CD4+T cells from ILA subjects are highly proliferative and show an excessive functional activity, likely related to the loss of KLRG1 expression, which may contribute to an inflammatory state and the development of ILA.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T CD4-Positivos/inmunología , Enfermedades Pulmonares Intersticiales/inmunología , Anciano , Estudios de Casos y Controles , Proliferación Celular , Citocinas/sangre , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Fenotipo , Acetato de Tetradecanoilforbol
2.
Microb Pathog ; 153: 104793, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33582220

RESUMEN

Tuberculosis (TB) is an infectious disease caused by the bacilli Mycobacterium tuberculosis (Mtb); most TB patients are infected with strains of Mtb sensitive to first-line drugs (DS-TB), but in the last years has been increased the presence of multidrug-resistant TB (MDR-TB). HLA class II (HLA-II) is expressed on antigen-presenting cells and reported the association between HLA alleles and DS-TB in the Mexican population. We studied HLA-II + CD16+ monocytes frequency and its relation with a pro-inflammatory profile during DS-TB versus MDR-TB, both before as in response to anti-tuberculosis treatment. Peripheral blood was obtained from MDR-TB at the basal time (before use of therapy), 1, 3, and 8 months of anti-TB therapy (moTBt), whereas DS-TB at basal and 1 and 6 moTBt. Our data showed that contrary to DS-TB, MDR-TB patients have decreased the frequency of HLA-II + monocytes and increased the pro-inflammatory CD16+ monocytes from basal time until 8 moTBt. Similarly, only MDR-TB patients still have a high plasma level of IFN-γ and TNF pro-inflammatory cytokines for a long-time, and although MDR-TB patients showed an increased level of the soluble form of TIM3 and GAL9 at baseline, those molecules decreased as a response to anti-TB therapy. Finally, our data indicated that MDR-TB displayed DRB1*04 allele, suggesting an association between the infection by multidrug-resistance Mtb strain and the presence of the DRB1*04 allele in Mexican TB patients.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Alelos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Cadenas HLA-DRB1 , Humanos , Inflamación , Monocitos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética
3.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445140

RESUMEN

Overproduction of inflammatory cytokines is a keystone event in COVID-19 pathogenesis; TNF and its receptors (TNFR1 and TNFR2) are critical pro-inflammatory molecules. ADAM17 releases the soluble (sol) forms of TNF, TNFR1, and TNFR2. This study evaluated TNF, TNFRs, and ADAM17 at the protein, transcriptional, and gene levels in COVID-19 patients with different levels of disease severity. In total, 102 patients were divided into mild, moderate, and severe condition groups. A group of healthy donors (HD; n = 25) was included. Our data showed that solTNFR1 and solTNFR2 were elevated among the COVID-19 patients (p < 0.0001), without increasing the transcriptional level. Only solTNFR1 was higher in the severe group as compared to the mildly ill (p < 0.01), and the level was higher in COVID-19 patients who died than those that survived (p < 0.0001). The solTNFR1 level had a discrete negative correlation with C-reactive protein (p = 0.006, Rho = -0.33). The solADAM17 level was higher in severe as compared to mild disease conditions (p < 0.01), as well as in COVID-19 patients who died as compared to those that survived (p < 0.001). Additionally, a potential association between polymorphism TNFRSF1A:rs767455 and a severe degree of disease was suggested. These data suggest that solTNFR1 and solADAM17 are increased in severe conditions. solTNFR1 should be considered a potential target in the development of new therapeutic options.


Asunto(s)
Proteína ADAM17 , COVID-19/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Proteína ADAM17/sangre , Proteína ADAM17/inmunología , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores Tipo I de Factores de Necrosis Tumoral/sangre , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
4.
Clin Immunol ; 215: 108424, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305453

RESUMEN

Hypersensitivity pneumonitis (HP) is an interstitial lung disease, characterized by lung inflammation (non-fibrotic HP) that may often progresses to fibrosis (Fibrotic HP). The tumor necrosis factor (TNF) and its receptors (TNFR1 and TNFR2) can be found as soluble (sol) and transmembrane (tm) forms, playing pro-inflammatory functions but also has been related to immune regulatory functions. Bronchioalveolar lavage from fibrotic and non-fibrotic HP patients was obtained, and immune cells were characterized by flow cytometry, whereas soluble proteins were analyzed by ELISA. Compare to fibrotic HP patients, HP patients with non-fibrotic disease have accumulation of pro-inflammatory CD3+ myeloid cells, cell subpopulations that have decreased tmTNFR2 expression, and low frequency of regulatory-T cells. Whereas solTNF, solTNFR2, and IL-8 are increased. These findings suggest that the TNF pathway may explain, at least partially, the differences between both HP clinical forms. The evaluation of the TNF family molecules may help to develop new therapeutic approaches.


Asunto(s)
Alveolitis Alérgica Extrínseca/metabolismo , Leucocitos/metabolismo , Pulmón/metabolismo , Proteínas de la Membrana/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Líquido del Lavado Bronquioalveolar , Complejo CD3/metabolismo , Femenino , Humanos , Interleucina-8/metabolismo , Masculino , Persona de Mediana Edad , Células Mieloides/metabolismo , Neumonía/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631034

RESUMEN

Manipulating the immune system by blocking the immune checkpoint receptors is the basis of immunotherapy, a relevant tool in current clinical oncology. The strategy of blocking the immune checkpoints (Immune Checkpoint Inhibitors, ICI) consists of using monoclonal antibodies to inhibit the interaction between ligand and inhibitory receptors from triggering a complete activation of helper and cytotoxic T cells to fight against tumour cells. Immunotherapy has benefited patients with diverse cancers such as stomach, lung, melanoma, and head and neck squamous cell carcinoma, among others. Unfortunately, a growing number of reports have indicated that the ICI treatment also can show a dark side under specific conditions; some of the adverse effects induced by ICI are immunosuppression, opportunistic infections, and organ-specific alterations. This review discusses some immunologic aspects related to these unwanted effects.

6.
J Immunol Res ; 2023: 3577334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928435

RESUMEN

T-cell Immunoglobulin and Mucin Domain 3 (TIM-3) is an immune checkpoint receptor known to regulate T-cell activation and has been targeted for immunotherapy in cancer and other diseases. However, its expression and function in other cell types, such as macrophages, are poorly understood. This study investigated TIM-3 expression in human macrophages polarized to M1 (stimulated with IFN-γ and LPS) and M2 (stimulated with IL-4 and IL-13) phenotypes using an in vitro model. Our results show that M1 macrophages have a lower frequency of TIM-3+ cells compared to M2 macrophages at 48 and 72 hr poststimulation. Additionally, we observed differential levels of soluble ADAM 10, an enzyme responsible for TIM-3 release, in the supernatants of M1 and M2 macrophages at 72 hr. We also found that the TIM-3 intracellular tail might associate with lymphocyte-specific protein 1 (LSP-1), a protein implicated in cell motility and podosome formation. These findings enhance our understanding of TIM-3 function in myeloid cells such as macrophages and may inform the development of immunotherapies with reduced immune-related adverse effects.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Macrófagos , Proteínas de Microfilamentos , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Proteínas de Microfilamentos/metabolismo
7.
Cells ; 11(10)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626672

RESUMEN

In recent years, a growing body of evidence has shown the presence of a subpopulation of macrophages that express CD3, especially in the context of mycobacterial infections. Despite these findings, the function of these cells has been poorly understood. Furthermore, the low frequency of CD3+ macrophages in humans limits the study of this subpopulation. This work aimed to evaluate the expression of CD3 in a murine macrophage cell line and its potential for the study of CD3 signaling. The murine macrophage cell line RAW was used to evaluate CD3 expression at the transcriptional and protein levels and the effect of in vitro infection with the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) on these. Our data showed that RAW macrophages express CD3, both the ε and ζ chains, and it is further increased at the transcriptional level after BCG infection. Furthermore, our data suggest that CD3 can be found on the cell surface and intracellularly. However, this molecule is internalized constantly, mainly after activation with anti-CD3 stimulus, but interestingly, it is stably maintained at the transcriptional level. Finally, signaling proteins such as NFAT1, c-Jun, and IKK-α are highly expressed in RAW macrophages. They may play a role in the CD3-controlled signaling pathway to deliver inflammatory cytokines such as TNF and IL-6. Our study provides evidence to support that RAW cells are a suitable model to study the function and signaling of the CD3 complex in myeloid cells.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Animales , Vacuna BCG/farmacología , Humanos , Macrófagos/metabolismo , Ratones , Mycobacterium bovis/fisiología , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
8.
Cancers (Basel) ; 14(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053573

RESUMEN

Human herpesvirus-8 infection (HHV-8) is the causative agent of Kaposi sarcoma (KS) and is highly prevalent among people living with HIV (KS/HIV). It has been reported that valganciclovir (VGC) reduces HHV-8 replication in KS/HIV patients. However, currently it is unclear if VGC modifies the frequency and induces changes in markers of immune regulation of immune cells necessary to eliminate HHV8-infected cells, such as Natural Killer (NK) and NK T cells (NKT). This study evaluated the effect of VGC used as antiviral HHV8 therapy in KS patients on the frequency of NK and NKT subpopulations based on the CD27 and CD57 expression, and the immunosenescence markers, PD-1 and KLRG1. Twenty KS/HIV patients were followed-up at baseline (W0), 4 (W4), and 12 weeks (W12) of the study protocol. Among them, 10 patients received a conventional treatment scheme (CT), solely antiretroviral therapy (ART), and 10 patients received a modified treatment regime (MT), including VGC plus ART. In both groups, bleomycin/vincristine was administrated according to the treating physician's decision. The soluble levels of IL-15, PD-L1, PD-L2, and E-cadherin were quantified across the follow-up. Our results showed that the higher IL-15 levels and lower NK frequencies cells in KS/HIV patients reach almost normal values with both treatments regimes at W12. CD27+ NK and NKT cell frequencies increased since W4 on KS/HIV patients with MT. Furthermore, PD-1 expression decreased while KLRG1 increased on NK and NKT subpopulations at W12, and it is accompanied by increased PD-L1 plasma level since W4. Our study highlights the disruption of NK and NKT subpopulations in patients with KS/HIV and explores VGC treatment's contribution to immune reconstitution during the first weeks of treatment.

9.
Front Immunol ; 13: 949413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967349

RESUMEN

Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Receptor de Interferón alfa y beta , COVID-19/genética , COVID-19/mortalidad , Hospitalización , Humanos , Interferón Tipo I/genética , Interferón-alfa/genética , Receptor de Interferón alfa y beta/genética
10.
Life (Basel) ; 11(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198803

RESUMEN

Immune reconstitution inflammatory syndrome (IRIS) is an exacerbated immune response that can occur to HIV+ patients after initiating antiretroviral therapy (ART). IRIS pathogenesis is unclear, but dysfunctional and exhausted cells have been reported in IRIS patients, and the TIM-3/Gal-9 axis has been associated with chronic phases of viral infection. This study aimed to evaluate the soluble levels of TIM-3 and Gal-9 and their relationship with IRIS development. TIM-3, Gal-9, TNF-α, IFN-γ, IL-6, TNFR1, TNFR2, E-cadherin, ADAM10, and ADAM17 were measured to search for IRIS-associated biomarkers in plasma samples from 0-, 4-, 8-, 12-, and 24-weeks after ART initiation of 61 HIV+ patients (15 patients developed IRIS, and 46 did not). We found that patients who developed IRIS had higher levels of TIM-3 [median 4806, IQR: 3206-6182] at the time of the IRIS events, compared to any other follow-up time evaluated in these patients or compared with a control group of patients who did not develop IRIS. Similarly, IRIS patients had a higher TNF-α level [median 10.89, IQR: 8.36-12.34] at IRIS events than any other follow-up time evaluated. Other molecules related to the TIM-3 and TNF-α pathway (Gal-9, IL-6, IFN-γ, TNFR1, TNFR2, ADAM-10, and ADAM-17) did not change during the IRIS events. In conclusion, our data suggest that a high level of soluble TIM-3 and TNF-α could be used as an IRIS biomarker.

11.
J Immunol Res ; 2021: 6654220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977111

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains as a leading infectious cause of death worldwide. The increasing number of multidrug-resistant TB (MDR-TB) cases contributes to the poor control of the TB epidemic. Currently, little is known about the immunological requirements of protective responses against MDR-TB. This is of major relevance to identify immune markers for treatment monitoring and targets for adjuvant immunotherapies. Here, we hypothesized that MDR-TB patients display unique immunophenotypical features and immune cell migration dynamics compared to drug-sensitive TB (DS-TB). Hence, we prospectively conducted an extensive characterization of the immune profile of MDR-TB patients at different time points before and after pharmacological therapy. For this purpose, we focused on the leukocyte expression of chemokine receptors, distribution of different monocyte and lymphocyte subsets, plasma levels of chemotactic factors, and in vitro migration capacity of immune cells. Our comparative cohort consisted of DS-TB patients and healthy volunteer donors (HD). Our results demonstrate some unique features of leukocyte migration dynamics during MDR-TB. These include increased and prolonged circulation of CD3+ monocytes, CCR4+ monocytes, EM CD4+ T cells, EM/CM CD8+ T cells, and CXCR1+CXCR3+ T cells that is sustained even after the administration of anti-TB drugs. We also observed shared characteristics of both MDR-TB and DS-TB that include CCR2+ monocyte depletion in the blood; high plasma levels of MPC-1, CCL-7, and IP-10; and increased responsiveness of leukocytes to chemotactic signals in vitro. Our study contributes to a better understanding of the MDR-TB pathobiology and uncovers immunological readouts of treatment efficacy.


Asunto(s)
Antituberculosos/farmacología , Leucocitos Mononucleares/inmunología , Receptores de Quimiocina/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/inmunología , Tuberculosis Pulmonar/inmunología , Adulto , Antituberculosos/uso terapéutico , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Casos y Controles , Movimiento Celular/inmunología , Monitoreo de Drogas/métodos , Estudios de Seguimiento , Voluntarios Sanos , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/aislamiento & purificación , Estudios Prospectivos , Receptores de Quimiocina/análisis , Tuberculosis Resistente a Múltiples Medicamentos/sangre , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología
12.
J Immunol Res ; 2018: 8695157, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607331

RESUMEN

A variety of receptors perform the function of attenuating or inhibiting activation of cells in which they are expressed. Examples of these kinds of receptors include TIM-3 and PD-1, among others that have been widely studied in cells of lymphoid origin and, though to a lesser degree, in other cell lines. Today, several studies describe the function of these molecules as part of the diverse mechanisms of immune tolerance that exist in the immune system. This review analyzes the function of some of these proteins in monocytes and macrophages and as well as their participation as inhibitory molecules or elements of immunological tolerance that also act in innate defense mechanisms. We chose the receptors TIM-3, PD-1, CD32b, and CD200R because these molecules have distinct functional characteristics that provide examples of the different regulating mechanisms in monocytes and macrophages.


Asunto(s)
Antígenos de Superficie/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Macrófagos/inmunología , Monocitos/inmunología , Receptores de Superficie Celular/metabolismo , Receptores de IgG/metabolismo , Animales , Humanos , Tolerancia Inmunológica , Inmunidad Innata , Activación de Macrófagos , Receptores de Orexina , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal
13.
Front Immunol ; 7: 229, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379093

RESUMEN

The transmembrane protein TIM-3 is a type I protein expressed by sub-types of lymphoid cells, such as lymphocytes Th1, Th17, Tc1, NK, as well as in myeloid cells. Scientific evidence indicates that this molecule acts as a negative regulator of T lymphocyte activation and that its expression is modified in viral infections or autoimmune diseases. In addition to evidence from lymphoid cells, the function of TIM-3 has been investigated in myeloid cells, such as monocytes, macrophages, and dendritic cells (DC), where studies have demonstrated that it can regulate cytokine production, cell activation, and the capture of apoptotic bodies. Despite these advances, the function of TIM-3 in myeloid cells and the molecular mechanisms that this protein regulates are not yet fully understood. This review examines the most recent evidence concerning the function of TIM-3 when expressed in myeloid cells, primarily macrophages, and the potential impact of that function on the field of basic immunology.

14.
J Immunol Res ; 2015: 984973, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347897

RESUMEN

Lipoarabinomannan (LAM) is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients). Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24-120 hours) and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68(+), CD33(+), and CD86(+) macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2(+) and TLR4(+) macrophages also decreased, but the percentage of MMR(+) expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.


Asunto(s)
Diferenciación Celular/inmunología , Lipopolisacáridos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/inmunología , Antígenos de Superficie/metabolismo , Citocinas/biosíntesis , Humanos , Inmunofenotipificación , Macrófagos/inmunología , Monocitos/metabolismo , Mycobacterium tuberculosis/inmunología , Fagocitosis , Fenotipo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Tuberculosis/inmunología , Tuberculosis/metabolismo , Tuberculosis/microbiología
15.
J Int AIDS Soc ; 18: 20078, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26486200

RESUMEN

INTRODUCTION: T cell immunoglobulin and mucin domain (Tim) 3 and programmed death 1 (PD-1) are co-inhibitory receptors involved in the so-called T cell exhaustion, and in vivo blockade of these molecules restores T cell dysfunction. High expression of Tim-3 and PD-1 is induced after chronic antigen-specific stimulation of T cells during HIV infection. We have previously demonstrated that the interaction of Tim-3 with its ligand galectin-9 induces macrophage activation and killing of Mycobacterium tuberculosis. Our aim in this study was to analyze the Tim-3 expression profile before and after six months of antiretroviral therapy and the impact of Tim-3 and PD-1 blocking on immunity against M. tuberculosis. MATERIALS AND METHODS: HIV+ patients naïve to anti-retroviral therapy (ART) were followed up for six months. Peripheral immune-cell phenotype (CD38/HLA-DR/galectin-9/Tim-3 and PD-1) was assessed by flow cytometry. Supernatants were analyzed with a multiplex cytokine detection system (human Th1/Th2 cytokine Cytometric Bead Array) by flow cytometry. Control of bacterial growth was evaluated by using an in vitro experimental model in which virulent M. tuberculosis-infected macrophages were cultured with T cells in the presence or absence of Tim-3 and PD-1 blocking antibodies. Interleukin-1 beta treatment of infected macrophages was evaluated by enumerating colony-forming units. RESULTS: We showed that HIV+ patients had an increased expression of Tim-3 in T cells and were able to control bacterial growth before ART administration. By blocking Tim-3 and PD-1, macrophages and T cells recovered their functionality and had a higher ability to control bacterial growth; this result was partially dependent on the restitution of cytokine production. CONCLUSIONS: In this study, we demonstrated that increased Tim-3 expression can limit the ability of the immune system to control the infection of intracellular bacteria such as M. tuberculosis. The use of ART and the in vitro manipulation of the Tim-3 and PD-1 molecules restored the functionality of T cells and macrophages to restrict bacterial growth. Our results provide a novel immune strategy that may be implemented in the near future in order to improve the immune responses in HIV+ patients.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/inmunología , Infecciones por VIH/inmunología , Macrófagos/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Linfocitos T/fisiología , Tuberculosis/inmunología , Adulto , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Masculino , Proteínas de la Membrana/análisis , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/análisis , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Tuberculosis/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA