Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 14(7): 11492-503, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-25057134

RESUMEN

Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.


Asunto(s)
Agricultura/métodos , Lactuca/química , Nitrógeno/química , Plantas/química , Impedancia Eléctrica , Fertilizantes/análisis
2.
Sensors (Basel) ; 13(8): 10823-43, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23959242

RESUMEN

Nitrogen (N) plays a key role in the plant life cycle. It is the main plant mineral nutrient needed for chlorophyll production and other plant cell components (proteins, nucleic acids, amino acids). Crop yield is affected by plant N status. Thus, the optimization of nitrogen fertilization has become the object of intense research due to its environmental and economic impact. This article focuses on reviewing current methods and techniques used to determine plant N status. Kjeldahl digestion and Dumas combustion have been used as reference methods for N determination in plants, but they are destructive and time consuming. By using spectroradiometers, reflectometers, imagery from satellite sensors and digital cameras, optical properties have been measured to estimate N in plants, such as crop canopy reflectance, leaf transmittance, chlorophyll and polyphenol fluorescence. High correlation has been found between optical parameters and plant N status, and those techniques are not destructive. However, some drawbacks include chlorophyll saturation, atmospheric and soil interference, and the high cost of instruments. Electrical properties of plant tissue have been used to estimate quality in fruits, and water content in plants, as well as nutrient deficiency, which suggests that they have potential for use in plant N determination.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Predicción , Nitrógeno/metabolismo , Plantas/metabolismo , Transductores/tendencias , Diseño de Equipo/tendencias , Nitrógeno/análisis
3.
Int J Mol Sci ; 14(5): 10178-96, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23676352

RESUMEN

Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress.


Asunto(s)
Capsicum/efectos de los fármacos , Quitosano/farmacología , Peróxido de Hidrógeno/farmacología , Hojas de la Planta/efectos de los fármacos , Ácido Salicílico/farmacología , Capsicum/genética , Capsicum/metabolismo , Catalasa/genética , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Estrés Oxidativo , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
4.
Int J Mol Sci ; 12(11): 7301-13, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174599

RESUMEN

A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44-47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV.


Asunto(s)
Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Capsicum/enzimología , Capsicum/microbiología , Capsicum/virología , Clonación Molecular , Biología Computacional , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Escherichia coli/genética , Etilenos/metabolismo , Geminiviridae , Glicoproteínas/genética , Virus del Mosaico , Oxilipinas/metabolismo , Phytophthora , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácido Salicílico/metabolismo , Análisis de Secuencia de ADN , Superóxido Dismutasa/genética
5.
Front Plant Sci ; 8: 1762, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081787

RESUMEN

Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

6.
Biomed Res Int ; 2015: 480386, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26509157

RESUMEN

Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.


Asunto(s)
Bacterias/genética , Metagenómica , Microbiología del Agua , Animales , Acuicultura , Biología Computacional , Hidroponía , Metabolómica/métodos , Proteómica/métodos , ARN Ribosómico 16S/genética , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA