Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Integr Plant Biol ; 62(3): 378-392, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31691466

RESUMEN

Pathogen avirulence (Avr) effectors interplay with corresponding plant resistance (R) proteins and activate robust plant immune responses. Although the expression pattern of Avr genes has been tied to their functions for a long time, it is still not clear how Avr gene expression patterns impact plant-microbe interactions. Here, we selected PsAvr3b, which shows a typical effector gene expression pattern from a soybean root pathogen Phytophthora sojae. To modulate gene expression, we engineered PsAvr3b promoter sequences by in situ substitution with promoter sequences from Actin (constitutive expression), PsXEG1 (early expression), and PsNLP1 (later expression) using the CRISPR/Cas9. PsAvr3b driven by different promoters resulted in distinct expression levels across all the tested infection time points. Importantly, those mutants with low PsAvr3b expression successfully colonized soybean plants carrying the cognate R gene Rps3b. To dissect the difference in plant responses to the PsAvr3b expression level, we conducted RNA-sequencing of different infection samples at 24 h postinfection and found soybean immune genes, including a few previously unknown genes that are associated with resistance. Our study highlights that fine-tuning in Avr gene expression impacts the compatibility of plant disease and provides clues to improve crop resistance in disease control management.


Asunto(s)
Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genotipo , Enfermedades de las Plantas/genética , Polimorfismo Genético/genética , Regiones Promotoras Genéticas/genética
2.
Phytopathology ; 108(12): 1373-1385, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29927356

RESUMEN

To develop an effective biological agent to control Sclerotinia sclerotiorum, three endophytic Bacillus spp. strains with high antagonistic activity were isolated from maize seed and characterized. In vitro assays revealed that the Bacillus endophytes could produce volatile organic compounds (VOC) that reduced sclerotial production and inhibited mycelial growth of S. sclerotiorum. Gas chromatography-mass spectrometry revealed that the selected strains produced 16 detectable VOC. Eight of the produced VOC exhibited negative effects on S. sclerotiorum, while a further four induced accumulation of reactive oxygen species in mycelial cells. A mixture of VOC produced by Bacillus velezensis VM11 caused morphological changes in the ultrastructure and organelle membranes of S. sclerotiorum mycelial cells. The bromophenol blue assay revealed a yellow color of untreated fungal mycelium, which grew faster and deeper from 24 to 72 h postinoculation, as an indication of reduced pH. The potassium permanganate (KMnO4) titration assay showed that the rate of oxalic acid accumulation was higher in minimal salt liquid medium cultures inoculated with untreated fungal plugs compared with the Bacillus VOC-treated ones. Interestingly, biological control assays using host-plant leaves challenged with treated fungal mycelial plugs produced reduced lesions compared with the control. These findings provide new viable possibilities of controlling diseases caused by S. sclerotiorum using VOC produced by Bacillus endophytes.


Asunto(s)
Antibiosis , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Bacillus/química , Enfermedades de las Plantas/microbiología , Compuestos Orgánicos Volátiles/farmacología , Antifúngicos/metabolismo , Ascomicetos/crecimiento & desarrollo , Ascomicetos/ultraestructura , Bacillus/genética , Bacillus/fisiología , Endófitos , Solanum lycopersicum/microbiología , Microscopía Electrónica de Transmisión , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/ultraestructura , Control Biológico de Vectores , Filogenia , Glycine max/microbiología , Nicotiana/microbiología , Compuestos Orgánicos Volátiles/metabolismo
3.
Front Plant Sci ; 9: 1105, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090111

RESUMEN

PsAvr3c is an effector identified from oomycete plant pathogen Phytophthora sojae that causes soybean root and stem rot disease. Earlier studies have demonstrated that PsAvr3c binds to a novel soybean spliceosomal complex protein, GmSKRP, to reprogram the splicing of hundreds of pre-mRNAs and consequently subvert host immunity. PsAvr3c family genes are present in some other Phytophthora species, but their function remains unknown. Here, we characterized the functions of PsAvh27b (PsAvr3c paralog from P. sojae), ProbiAvh89 and PparvAvh214 (orthologs from P. cinnamomi var. robiniae and Phytophthora parvispora, respectively). The study reveals that both PsAvh27b and ProbiAvh89 interact with GmSKRPs in vitro, and stabilize GmSKRP1 in vivo. However, PparvAvh214 cannot interact with GmSKRPs proteins. The qRT-PCR result illustrates that the alternative splicing of pre-mRNAs of several soybean defense-related genes are altered in PsAvh27b and ProbiAvh89 when over-expressed on soybean hairy roots. Moreover, PsAvr3c family members display differences in promoting Phytophthora infection in a SKRP-dependent manner. Overall, this study highlights that the effector-mediated host pre-mRNA alternative splicing occurs in other pathosystems, thus providing new probes to further dissect SKRP-mediated plant susceptibility.

4.
Genome Biol ; 19(1): 181, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382931

RESUMEN

BACKGROUND: Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. RESULTS: We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. CONCLUSIONS: Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Genoma , Glycine max/parasitología , Metiltransferasas/metabolismo , Phytophthora/genética , Genómica , Filogenia , Phytophthora/clasificación , Phytophthora/enzimología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA