Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Bioorg Med Chem ; 24(22): 5717-5729, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729195

RESUMEN

The transcriptional regulator FUSE binding protein 1 (FUBP1) is aberrantly upregulated in various malignancies, fulfilling its oncogenic role by the deregulation of critical genes involved in cell cycle control and apoptosis regulation. Thus, the pharmaceutical inhibition of this protein would represent an encouraging novel targeted chemotherapy. Here, we demonstrate the identification and initial optimization of a pyrazolo[1,5a]pyrimidine-based FUBP1 inhibitor derived from medium throughput screening, which interferes with the binding of FUBP1 to its single stranded target DNA FUSE. We were able to generate a new class of FUBP1 interfering molecules with in vitro and biological activity. In biophysical assays, we could show that our best inhibitor, compound 6, potently inhibits the binding of FUBP1 to the FUSE sequence with an IC50 value of 11.0µM. Furthermore, hepatocellular carcinoma cells exhibited sensitivity towards the treatment with compound 6, resulting in reduced cell expansion and induction of cell death. Finally, we provide insights into the corresponding SAR landscape, leading to a prospective enhancement in potency and cellular efficacy.


Asunto(s)
ADN Helicasas/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Pirimidinas/síntesis química , Pirimidinas/química , Proteínas de Unión al ARN , Relación Estructura-Actividad , Células Tumorales Cultivadas
2.
Bioorg Med Chem Lett ; 24(10): 2236-9, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24745967

RESUMEN

Several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. Nevertheless, many promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity and their dibasic character. Analysis of previously, as potential PET ligands synthesized compounds (ST-889, ST-928) revealed promising results concerning physicochemical properties and drug-likeness. Herein, the synthesis, the evaluation of the binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties of further novel benzylpiperidine variations on H3R antagonists is described. Due to the introduction of various small hydrophilic moieties in the structure, drug-likeness parameters have been improved. For instance, compound 12 (ST-1032) showed in addition to high affinity at the H3R (pKi (hH3R)=9.3) clogS, clogP, LE, LipE, and LELP values of -2.48, 2.18, 0.44, 7.14, and 4.95, respectively. Also, the keto derivative 5 (ST-1703, pKi (hH3R)=8.6) revealed LipE and LELP values of 5.25 and 6.84, respectively.


Asunto(s)
Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/farmacología , Piperidinas/química , Piperidinas/farmacología , Receptores Histamínicos H3/metabolismo , Antagonistas de los Receptores Histamínicos/síntesis química , Humanos , Cinética , Ligandos , Piperidinas/síntesis química , Unión Proteica , Receptores Histamínicos H3/química
3.
Nucleic Acids Res ; 38(17): 5761-73, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20453030

RESUMEN

Small interfering RNAs (siRNAs) are now established as the preferred tool to inhibit gene function in mammalian cells yet trigger unintended gene silencing due to their inherent miRNA-like behavior. Such off-target effects are primarily mediated by the sequence-specific interaction between the siRNA seed regions (position 2-8 of either siRNA strand counting from the 5'-end) and complementary sequences in the 3'UTR of (off-) targets. It was previously shown that chemical modification of siRNAs can reduce off-targeting but only very few modifications have been tested leaving more to be identified. Here we developed a luciferase reporter-based assay suitable to monitor siRNA off-targeting in a high throughput manner using stable cell lines. We investigated the impact of chemically modifying single nucleotide positions within the siRNA seed on siRNA function and off-targeting using 10 different types of chemical modifications, three different target sequences and three siRNA concentrations. We found several differently modified siRNAs to exercise reduced off-targeting yet incorporation of the strongly destabilizing unlocked nucleic acid (UNA) modification into position 7 of the siRNA most potently reduced off-targeting for all tested sequences. Notably, such position-specific destabilization of siRNA-target interactions did not significantly reduce siRNA potency and is therefore well suited for future siRNA designs especially for applications in vivo where siRNA concentrations, expectedly, will be low.


Asunto(s)
ARN Interferente Pequeño/química , Línea Celular Tumoral , Genes Reporteros , Humanos , Ácidos Nucleicos/química , Interferencia de ARN , ARN sin Sentido/química
4.
Nucleic Acids Res ; 37(9): 2867-81, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19282453

RESUMEN

The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3'-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.


Asunto(s)
Interferencia de ARN , ARN Interferente Pequeño/química , Línea Celular Tumoral , Supervivencia Celular , Humanos , Estabilidad del ARN , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/toxicidad , Complejo Silenciador Inducido por ARN/metabolismo
5.
J Med Chem ; 64(7): 3720-3746, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33769048

RESUMEN

Autophagy is the common name for a number of lysosome-based degradation pathways of cytosolic cargos. The key components of autophagy are members of Atg8 family proteins involved in almost all steps of the process, from autophagosome formation to their selective fusion with lysosomes. In this study, we show that the homologous members of the human Atg8 family proteins, LC3A and LC3B, are druggable by a small molecule inhibitor novobiocin. Structure-activity relationship (SAR) studies of the 4-hydroxy coumarin core scaffold were performed, supported by a crystal structure of the LC3A dihydronovobiocin complex. The study reports the first nonpeptide inhibitors for these protein interaction targets and will lay the foundation for the development of more potent chemical probes for the Atg8 protein family which may also find applications for the development of autophagy-mediated degraders (AUTACs).


Asunto(s)
4-Hidroxicumarinas/farmacología , Autofagia/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , 4-Hidroxicumarinas/síntesis química , 4-Hidroxicumarinas/metabolismo , Células HEK293 , Humanos , Ligandos , Estructura Molecular , Novobiocina/química , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 16(1): 518-29, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17904849

RESUMEN

RNA-interference has been recognized as a powerful tool to control gene function and has been used for gene silencing by knocking down mRNA. Chemically modified RNAs, especially 2'-O-modification, successfully improved their physicochemical and pharmaceutical properties such as stability, nuclease resistance and delivery. Here, we report the synthesis of adenosine building blocks with different 2'-tethered modifications like aminoethyl and guanidinoethyl and show that they are compatible with RNAi function. They enhance the half life of the siRNA in serum suggesting that these modifications can enhance the pharmacokinetic properties and knock down activity of siRNAs in vivo.


Asunto(s)
Adenosina/análogos & derivados , Interferencia de ARN , ARN Interferente Pequeño/síntesis química , Adenosina/química , Adenosina/farmacología , Estabilidad del ARN
7.
Artículo en Inglés | MEDLINE | ID: mdl-18058499

RESUMEN

The chemical modification of the 2'-O-position of nucleosides proved to be of great importance for the RNA stability. Greater stability of RNA duplexes allows a longer half life in the cell and, therefore, a better effect of RNA Interference. Here we investigated the synthesis of 2'-O-aminoethyl adenosine as a cationic modified building block.


Asunto(s)
Adenosina/análogos & derivados , ARN/síntesis química , Adenosina/síntesis química , Adenosina/química , Estructura Molecular , ARN/química , Estabilidad del ARN
8.
ACS Chem Biol ; 12(2): 564-573, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28045490

RESUMEN

There is a current and pressing need for improved cancer therapies. The use of small molecule kinase inhibitors and their application in combinatorial regimens represent an approach to personalized targeted cancer therapy. A number of AGC kinases, including atypical Protein Kinase C enzymes (PKCs), are validated drug targets for cancer treatment. Most drug development programs for protein kinases focus on the development of drugs that bind at the ATP-binding site. Alternatively, allosteric drugs have great potential for the development of future innovative drugs. However, the rational development of allosteric drugs poses important challenges because the compounds not only must bind to a given site but also must stabilize forms of the protein with a desired effect at a distant site. Here we describe the development of a new class of compounds targeting a regulatory site (PIF-pocket) present in the kinase domain and provide biochemical and crystallographic data showing that these compounds allosterically inhibit the activity of atypical PKCs. PS432, a representative compound, decreased the rate of proliferation of non-small cell lung cancer cells more potently than aurothiomalate, an atypical PKCι inhibitor currently under evaluation in clinical trials, and significantly reduced tumor growth without side effects in a mouse xenograft model. The druglike chemical class provides ample possibilities for the synthesis of derivative compounds, with the potential to allosterically modulate the activity of atypical PKCs and other kinases.


Asunto(s)
Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Regulación Alostérica , Animales , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos
9.
Cell Chem Biol ; 23(10): 1193-1205, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27693059

RESUMEN

Allostery is a phenomenon observed in many proteins where binding of a macromolecular partner or a small-molecule ligand at one location leads to specific perturbations at a site not in direct contact with the region where the binding occurs. The list of proteins under allosteric regulation includes AGC protein kinases. AGC kinases have a conserved allosteric site, the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF) pocket, which regulates protein ATP-binding, activity, and interaction with substrates. In this study, we identify small molecules that bind to the ATP-binding site and affect the PIF pocket of AGC kinase family members, PDK1 and Aurora kinase. We describe the mechanistic details and show that although PDK1 and Aurora kinase inhibitors bind to the conserved ATP-binding site, they differentially modulate physiological interactions at the PIF-pocket site. Our work outlines a strategy for developing bidirectional small-molecule allosteric modulators of protein kinases and other signaling proteins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Indazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Sitio Alostérico/efectos de los fármacos , Aurora Quinasas/antagonistas & inhibidores , Aurora Quinasas/química , Aurora Quinasas/metabolismo , Sitios de Unión/efectos de los fármacos , Células HEK293 , Humanos , Indazoles/química , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinas/química , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
10.
Eur J Med Chem ; 86: 578-88, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25218907

RESUMEN

The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacología , Receptores Histamínicos H3/metabolismo , Uracilo/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de los Receptores Histamínicos H3/síntesis química , Antagonistas de los Receptores Histamínicos H3/química , Humanos , Ligandos , Estructura Molecular , Relación Estructura-Actividad , Uracilo/análogos & derivados , Uracilo/química
11.
Methods Mol Biol ; 623: 155-70, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217550

RESUMEN

Chemical synthesis has been a major endeavor to create active siRNAs. The downregulation of mRNA by 21-mer double-stranded siRNAs can be improved by using modified nucleotides, especially 2'-O-alkylated ones. Besides the commercially available 2 cent-O-methyl ribosides, 2'-alkyl groups bearing positive charges are especially promising candidates. We have shown that in a proper formulation they are superior to unmodified siRNAs. This may be due to enhanced stability and most probably to a better uptake into the cells.


Asunto(s)
ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Alquilación , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo , Espectrometría de Masas , Compuestos Organofosforados/química , ARN Mensajero/genética , ARN Interferente Pequeño/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA