Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 84(2): 345-358.e5, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199007

RESUMEN

Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Péptido Hidrolasas/metabolismo
2.
Cell ; 167(2): 471-483.e10, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693358

RESUMEN

Mitochondrial ribosomes translate membrane integral core subunits of the oxidative phosphorylation system encoded by mtDNA. These translation products associate with nuclear-encoded, imported proteins to form enzyme complexes that produce ATP. Here, we show that human mitochondrial ribosomes display translational plasticity to cope with the supply of imported nuclear-encoded subunits. Ribosomes expressing mitochondrial-encoded COX1 mRNA selectively engage with cytochrome c oxidase assembly factors in the inner membrane. Assembly defects of the cytochrome c oxidase arrest mitochondrial translation in a ribosome nascent chain complex with a partially membrane-inserted COX1 translation product. This complex represents a primed state of the translation product that can be retrieved for assembly. These findings establish a mammalian translational plasticity pathway in mitochondria that enables adaptation of mitochondrial protein synthesis to the influx of nuclear-encoded subunits.


Asunto(s)
Ciclooxigenasa 1/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Ciclooxigenasa 1/biosíntesis , Ciclooxigenasa 1/genética , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mitocondrial , Ribosomas/metabolismo
3.
Cell ; 154(3): 596-608, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911324

RESUMEN

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of ß-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the ß-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring ß-barrel formation in vivo and in organello and demonstrated that the ß-barrel was formed and membrane inserted while the precursor was bound to SAM. ß-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Mutación , Porinas/química , Porinas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
PLoS Biol ; 22(8): e3002449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146359

RESUMEN

Protein import and genome replication are essential processes for mitochondrial biogenesis and propagation. The J-domain proteins Pam16 and Pam18 regulate the presequence translocase of the mitochondrial inner membrane. In the protozoan Trypanosoma brucei, their counterparts are TbPam16 and TbPam18, which are essential for the procyclic form (PCF) of the parasite, though not involved in mitochondrial protein import. Here, we show that during evolution, the 2 proteins have been repurposed to regulate the replication of maxicircles within the intricate kDNA network, the most complex mitochondrial genome known. TbPam18 and TbPam16 have inactive J-domains suggesting a function independent of heat shock proteins. However, their single transmembrane domain is essential for function. Pulldown of TbPam16 identifies a putative client protein, termed MaRF11, the depletion of which causes the selective loss of maxicircles, akin to the effects observed for TbPam18 and TbPam16. Moreover, depletion of the mitochondrial proteasome results in increased levels of MaRF11. Thus, we have discovered a protein complex comprising TbPam18, TbPam16, and MaRF11, that controls maxicircle replication. We propose a working model in which the matrix protein MaRF11 functions downstream of the 2 integral inner membrane proteins TbPam18 and TbPam16. Moreover, we suggest that the levels of MaRF11 are controlled by the mitochondrial proteasome.


Asunto(s)
Replicación del ADN , ADN Mitocondrial , Proteínas Protozoarias , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Evolución Molecular
5.
Mol Microbiol ; 121(6): 1112-1126, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38622999

RESUMEN

All mitochondria import >95% of their proteins from the cytosol. This process is mediated by protein translocases in the mitochondrial membranes, whose subunits are generally highly conserved. Most eukaryotes have two inner membrane protein translocases (TIMs) that are specialized to import either presequence-containing or mitochondrial carrier proteins. In contrast, the parasitic protozoan Trypanosoma brucei has a single TIM complex consisting of one conserved and five unique subunits. Here, we identify candidates for new subunits of the TIM or the presequence translocase-associated motor (PAM) using a protein-protein interaction network of previously characterized TIM and PAM subunits. This analysis reveals that the trypanosomal TIM complex contains an additional trypanosomatid-specific subunit, designated TbTim15. TbTim15 is associated with the TIM complex, lacks transmembrane domains, and localizes to the intermembrane space. TbTim15 is essential for procyclic and bloodstream forms of trypanosomes. It contains two twin CX9C motifs and mediates import of both presequence-containing and mitochondrial carrier proteins. While the precise function of TbTim15 in mitochondrial protein import is unknown, our results are consistent with the notion that it may function as an import receptor for the non-canonical trypanosomal TIM complex.


Asunto(s)
Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales , Transporte de Proteínas , Proteínas Protozoarias , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/enzimología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Subunidades de Proteína/metabolismo
6.
Nature ; 569(7758): 679-683, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118508

RESUMEN

Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo
7.
Mol Microbiol ; 119(5): 537-550, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829306

RESUMEN

Consistent with other eukaryotes, the Trypanosoma brucei mitochondrial genome encodes mainly hydrophobic core subunits of the oxidative phosphorylation system. These proteins must be co-translationally inserted into the inner mitochondrial membrane and are synthesized by the highly unique trypanosomal mitoribosomes, which have a much higher protein to RNA ratio than any other ribosome. Here, we show that the trypanosomal orthologue of the mitoribosome receptor Mba1 (TbMba1) is essential for normal growth of procyclic trypanosomes but redundant in the bloodstream form, which lacks an oxidative phosphorylation system. Proteomic analyses of TbMba1-depleted mitochondria from procyclic cells revealed reduced levels of many components of the oxidative phosphorylation system, most of which belong to the cytochrome c oxidase (Cox) complex, three subunits of which are mitochondrially encoded. However, the integrity of the mitoribosome and its interaction with the inner membrane were not affected. Pull-down experiments showed that TbMba1 forms a dynamic interaction network that includes the trypanosomal Mdm38/Letm1 orthologue and a trypanosome-specific factor that stabilizes the CoxI and CoxII mRNAs. In summary, our study suggests that the function of Mba1 in the biogenesis of membrane subunits of OXPHOS complexes is conserved among yeast, mammals and trypanosomes, which belong to two eukaryotic supergroups.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Trypanosoma brucei brucei , Animales , Fosforilación Oxidativa , Trypanosoma brucei brucei/metabolismo , Proteómica , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Pathog ; 18(5): e1009717, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35500022

RESUMEN

The endoplasmic reticulum membrane complex (EMC) is a versatile complex that plays a key role in membrane protein biogenesis in the ER. Deletion of the complex has wide-ranging consequences including ER stress, disturbance in lipid transport and organelle tethering, among others. Here we report the function and organization of the evolutionarily conserved EMC (TbEMC) in the highly diverged eukaryote, Trypanosoma brucei. Using (co-) immunoprecipitation experiments in combination with mass spectrometry and whole cell proteomic analyses of parasites after depletion of select TbEMC subunits, we demonstrate that the TbEMC is composed of 9 subunits that are present in a high molecular mass complex localizing to the mitochondrial-endoplasmic reticulum interface. Knocking out or knocking down of single TbEMC subunits led to growth defects of T. brucei procyclic forms in culture. Interestingly, we found that depletion of individual TbEMC subunits lead to disruption of de novo synthesis of phosphatidylcholine (PC) or phosphatidylethanolamine (PE), the two most abundant phospholipid classes in T. brucei. Downregulation of TbEMC1 or TbEMC3 inhibited formation of PC while depletion of TbEMC8 inhibited PE synthesis, pointing to a role of the TbEMC in phospholipid synthesis. In addition, we found that in TbEMC7 knock-out parasites, TbEMC3 is released from the complex, implying that TbEMC7 is essential for the formation or the maintenance of the TbEMC.


Asunto(s)
Trypanosoma brucei brucei , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526678

RESUMEN

Mitochondrial protein import requires outer membrane receptors that evolved independently in different lineages. Here we used quantitative proteomics and in vitro binding assays to investigate the substrate preferences of ATOM46 and ATOM69, the two mitochondrial import receptors of Trypanosoma brucei The results show that ATOM46 prefers presequence-containing, hydrophilic proteins that lack transmembrane domains (TMDs), whereas ATOM69 prefers presequence-lacking, hydrophobic substrates that have TMDs. Thus, the ATOM46/yeast Tom20 and the ATOM69/yeast Tom70 pairs have similar substrate preferences. However, ATOM46 mainly uses electrostatic, and Tom20 hydrophobic, interactions for substrate binding. In vivo replacement of T. brucei ATOM46 by yeast Tom20 did not restore import. However, replacement of ATOM69 by the recently discovered Tom36 receptor of Trichomonas hydrogenosomes, while not allowing for growth, restored import of a large subset of trypanosomal proteins that lack TMDs. Thus, even though ATOM69 and Tom36 share the same domain structure and topology, they have different substrate preferences. The study establishes complementation experiments, combined with quantitative proteomics, as a highly versatile and sensitive method to compare in vivo preferences of protein import receptors. Moreover, it illustrates the role determinism and contingencies played in the evolution of mitochondrial protein import receptors.


Asunto(s)
Evolución Molecular , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Proteínas Portadoras/genética , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Unión Proteica , Precursores de Proteínas/genética , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/patogenicidad
10.
J Biol Chem ; 298(4): 101829, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293314

RESUMEN

The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales , Proteínas Protozoarias , Trypanosoma brucei brucei , Animales , Mamíferos/metabolismo , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
11.
Biol Chem ; 404(2-3): 135-155, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36122347

RESUMEN

Peroxisomes are organelles with vital functions in metabolism and their dysfunction is associated with human diseases. To fulfill their multiple roles, peroxisomes import nuclear-encoded matrix proteins, most carrying a peroxisomal targeting signal (PTS) 1. The receptor Pex5p recruits PTS1-proteins for import into peroxisomes; whether and how this process is posttranslationally regulated is unknown. Here, we identify 22 phosphorylation sites of Pex5p. Yeast cells expressing phospho-mimicking Pex5p-S507/523D (Pex5p2D) show decreased import of GFP with a PTS1. We show that the binding affinity between a PTS1-protein and Pex5p2D is reduced. An in vivo analysis of the effect of the phospho-mimicking mutant on PTS1-proteins revealed that import of most, but not all, cargos is affected. The physiological effect of the phosphomimetic mutations correlates with the binding affinity of the corresponding extended PTS1-sequences. Thus, we report a novel Pex5p phosphorylation-dependent mechanism for regulating PTS1-protein import into peroxisomes. In a broader view, this suggests that posttranslational modifications can function in fine-tuning the peroxisomal protein composition and, thus, cellular metabolism.


Asunto(s)
Peroxisomas , Receptores Citoplasmáticos y Nucleares , Humanos , Fosforilación , Peroxisomas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Portadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Proteínas
12.
J Biol Chem ; 297(5): 101050, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34571008

RESUMEN

The universally conserved P-loop ATPase Ola1 is implicated in various cellular stress response pathways, as well as in cancer and tumor progression. However, Ola1p functions are divergent between species, and the involved mechanisms are only poorly understood. Here, we studied the role of Ola1p in the heat shock response of the yeast Saccharomyces cerevisiae using a combination of quantitative and pulse labeling-based proteomics approaches, in vitro studies, and cell-based assays. Our data show that when heat stress is applied to cells lacking Ola1p, the expression of stress-protective proteins is enhanced. During heat stress Ola1p associates with detergent-resistant protein aggregates and rapidly forms assemblies that localize to stress granules. The assembly of Ola1p was also observed in vitro using purified protein and conditions, which resembled those in living cells. We show that loss of Ola1p results in increased protein ubiquitination of detergent-insoluble aggregates recovered from heat-shocked cells. When cells lacking Ola1p were subsequently relieved from heat stress, reinitiation of translation was delayed, whereas, at the same time, de novo synthesis of central factors required for protein refolding and the clearance of aggregates was enhanced when compared with wild-type cells. The combined data suggest that upon acute heat stress, Ola1p is involved in the stabilization of misfolded proteins, which become sequestered in cytoplasmic stress granules. This function of Ola1p enables cells to resume translation in a timely manner as soon as heat stress is relieved.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Nature ; 524(7566): 485-8, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26245374

RESUMEN

Most of the mitochondrial proteome originates from nuclear genes and is transported into the mitochondria after synthesis in the cytosol. Complex machineries which maintain the specificity of protein import and sorting include the TIM23 translocase responsible for the transfer of precursor proteins into the matrix, and the mitochondrial intermembrane space import and assembly (MIA) machinery required for the biogenesis of intermembrane space proteins. Dysfunction of mitochondrial protein sorting pathways results in diminishing specific substrate proteins, followed by systemic pathology of the organelle and organismal death. The cellular responses caused by accumulation of mitochondrial precursor proteins in the cytosol are mainly unknown. Here we present a comprehensive picture of the changes in the cellular transcriptome and proteome in response to a mitochondrial import defect and precursor over-accumulation stress. Pathways were identified that protect the cell against mitochondrial biogenesis defects by inhibiting protein synthesis and by activation of the proteasome, a major machine for cellular protein clearance. Proteasomal activity is modulated in proportion to the quantity of mislocalized mitochondrial precursor proteins in the cytosol. We propose that this type of unfolded protein response activated by mistargeting of proteins (UPRam) is beneficial for the cells. UPRam provides a means for buffering the consequences of physiological slowdown in mitochondrial protein import and for counteracting pathologies that are caused or contributed by mitochondrial dysfunction.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Transcriptoma , Respuesta de Proteína Desplegada/genética
14.
Mol Microbiol ; 112(6): 1731-1743, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31541487

RESUMEN

The mitochondrial contact site and cristae organization system (MICOS) mediates the formation of cristae, invaginations in the mitochondrial inner membrane. The highly diverged MICOS complex of the parasitic protist Trypanosoma brucei consists of nine subunits. Except for two Mic10-like and a Mic60-like protein, all subunits are specific for kinetoplastids. Here, we determined on a proteome-wide scale how ablation of individual MICOS subunits affects the levels of the other subunits. The results reveal co-regulation of TbMic10-1, TbMic10-2, TbMic16 and TbMic60, suggesting that these nonessential, integral inner membrane proteins form an interdependent network. Moreover, the ablation of TbMic34 and TbMic32 reveals another network consisting of the essential, intermembrane space-localized TbMic20, TbMic32, TbMic34 and TbMic40, all of which are peripherally associated with the inner membrane. The downregulation of TbMic20, TbMic32 and TbMic34 also interferes with mitochondrial protein import and reduces the size of the TbMic10-containing complexes. Thus, the diverged MICOS of trypanosomes contains two subcomplexes: a nonessential membrane-integrated one, organized around the conserved Mic10 and Mic60, that mediates cristae formation, and an essential membrane-peripheral one consisting of four kinetoplastid-specific subunits, that is required for import of intermembrane space proteins.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Trypanosoma brucei brucei/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Unión Proteica , Transporte de Proteínas , Trypanosoma/metabolismo , Trypanosoma/fisiología , Trypanosoma brucei brucei/fisiología
15.
Proc Natl Acad Sci U S A ; 114(37): E7679-E7687, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28847952

RESUMEN

Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.


Asunto(s)
Membranas Mitocondriales/fisiología , Transporte de Proteínas/fisiología , Transporte de ARN/fisiología , Proteínas Portadoras/metabolismo , Línea Celular , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Conformación Proteica , ARN de Transferencia/metabolismo , ARN de Transferencia/fisiología , Trypanosoma/genética , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética
16.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 323-333, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29154948

RESUMEN

The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
17.
PLoS Pathog ; 13(8): e1006550, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28827831

RESUMEN

Mitochondrial protein import is essential for Trypanosoma brucei across its life cycle and mediated by membrane-embedded heterooligomeric protein complexes, which mainly consist of trypanosomatid-specific subunits. However, trypanosomes contain orthologues of small Tim chaperones that escort hydrophobic proteins across the intermembrane space. Here we have experimentally analyzed three novel trypanosomal small Tim proteins, one of which contains only an incomplete Cx3C motif. RNAi-mediated ablation of TbERV1 shows that their import, as in other organisms, depends on the MIA pathway. Submitochondrial fractionation combined with immunoprecipitation and BN-PAGE reveals two pools of small Tim proteins: a soluble fraction forming 70 kDa complexes, consistent with hexamers and a second fraction that is tightly associated with the single trypanosomal TIM complex. RNAi-mediated ablation of the three proteins leads to a growth arrest and inhibits the formation of the TIM complex. In line with these findings, the changes in the mitochondrial proteome induced by ablation of one small Tim phenocopy the effects observed after ablation of TbTim17. Thus, the trypanosomal small Tims play an unexpected and essential role in the biogenesis of the single TIM complex, which for one of them is not linked to import of TbTim17.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Transporte de Proteínas/fisiología , Trypanosoma brucei brucei/crecimiento & desarrollo , Northern Blotting , Cromatografía Líquida de Alta Presión , Inmunoprecipitación , Estadios del Ciclo de Vida , Espectrometría de Masas , Microscopía Fluorescente , Membranas Mitocondriales/metabolismo , Trypanosoma brucei brucei/metabolismo
18.
PLoS Pathog ; 13(12): e1006808, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29287109

RESUMEN

Mitochondria cannot form de novo but require mechanisms that mediate their inheritance to daughter cells. The parasitic protozoan Trypanosoma brucei has a single mitochondrion with a single-unit genome that is physically connected across the two mitochondrial membranes with the basal body of the flagellum. This connection, termed the tripartite attachment complex (TAC), is essential for the segregation of the replicated mitochondrial genomes prior to cytokinesis. Here we identify a protein complex consisting of three integral mitochondrial outer membrane proteins-TAC60, TAC42 and TAC40-which are essential subunits of the TAC. TAC60 contains separable mitochondrial import and TAC-sorting signals and its biogenesis depends on the main outer membrane protein translocase. TAC40 is a member of the mitochondrial porin family, whereas TAC42 represents a novel class of mitochondrial outer membrane ß-barrel proteins. Consequently TAC40 and TAC42 contain C-terminal ß-signals. Thus in trypanosomes the highly conserved ß-barrel protein assembly machinery plays a major role in the biogenesis of its unique mitochondrial genome segregation system.


Asunto(s)
ADN de Cinetoplasto/biosíntesis , ADN de Cinetoplasto/genética , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Animales , Genoma Mitocondrial , Genoma de Protozoos , Humanos , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Señales de Clasificación de Proteína/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/patogenicidad
19.
Mol Cell ; 44(5): 811-8, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22152483

RESUMEN

The mitochondrial inner membrane harbors the complexes of the respiratory chain and translocase complexes for precursor proteins. We have identified a further subunit of the carrier translocase (TIM22 complex) that surprisingly is identical to subunit 3 of respiratory complex II, succinate dehydrogenase (Sdh3). The membrane-integral protein Sdh3 plays specific functions in electron transfer in complex II. We show by genetic and biochemical approaches that Sdh3 also plays specific functions in the TIM22 complex. Sdh3 forms a subcomplex with Tim18 and is involved in biogenesis and assembly of the membrane-integral subunits of the TIM22 complex. We conclude that the assembly of Sdh3 with different partner proteins, Sdh4 and Tim18, recruits it to two different mitochondrial membrane complexes with functions in bioenergetics and protein biogenesis, respectively.


Asunto(s)
Transporte de Electrón , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Succinato Deshidrogenasa/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Membranas Mitocondriales/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología
20.
Subcell Biochem ; 89: 261-285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30378027

RESUMEN

Different pull-down strategies were successfully applied to gain novel insight into the interactome of human membrane-associated proteins. Here, we compare the outcome, efficiency and potential of pull-down strategies applied to human peroxisomal membrane proteins. Stable membrane-bound protein complexes can be affinity-purified from genetically engineered human cells or subfractions thereof after detergent solubilization, followed by size exclusion chromatography and analysis by mass spectrometry (MS). As exemplified for Protein A-tagged human PEX14, one of the central constituents of the peroxisomal matrix protein import machinery, MS analyses of the affinity-purified complexes revealed an unexpected association of PEX14 with other protein assemblies like the microtubular network or the insertion apparatus for peroxisomal membrane proteins comprising PEX3, PEX16 and PEX19. The latter association was recently supported by using a different pull-down strategy following in vivo proximity labeling with biotin, named BioID, which enabled the identification of various membrane proteins in close proximity of PEX16 in living cells.


Asunto(s)
Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Línea Celular , Humanos , Membranas Intracelulares/metabolismo , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA