Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 107(6): 3468-3477, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246535

RESUMEN

Ice cream manufacture commonly results in the accumulation of wasted product that contains valuable food-grade quality components, including fat, carbohydrates, and protein. Methods have been developed for recovering the fat from this waste stream, but this results in the generation of a co-product rich in fermentable carbohydrates. This study aimed to investigate the potential for using this co-product as a fermentation substrate for production of antimicrobial peptides, called bacteriocins, by dairy starter cultures. Results showed that Streptococcus thermophilus B59671 and Lactococcus lactis 11454 produced the broad-spectrum bacteriocins thermophilin 110 and nisin, respectively, when the fermentation substrate was melted ice cream, or a co-product generated by a modified butter churning technique. Bacteriocin production varied depending on the brand and variety of vanilla ice cream used in this study. When an alternate enzyme-assisted fat extraction technique was used, S. thermophilus metabolism was impaired within the resulting co-product, and thermophilin 110 production was not observed. Lactococcus lactis was still able to grow in this co-product, but antimicrobial activity was not observed. Results from this study suggest the co-product generated when using the churning technique is a better choice to use as a base medium for future studies to optimize bacteriocin production.


Asunto(s)
Bacteriocinas , Fermentación , Helados , Lactobacillales , Bacteriocinas/metabolismo , Bacteriocinas/biosíntesis , Lactobacillales/metabolismo , Streptococcus thermophilus/metabolismo , Lactococcus lactis/metabolismo
2.
Biotechnol Lett ; 45(10): 1365-1379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37606751

RESUMEN

OBJECTIVE: Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS: Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS: Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.


Asunto(s)
Bacteriocinas , Piel , Alginatos , Bacteriocinas/farmacología , Agregación Celular , Hidrogeles
3.
J Dairy Sci ; 106(7): 4502-4515, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37164857

RESUMEN

Consumers' growing interest in fermented dairy foods necessitates research on a wide array of lactic acid bacterial strains to be explored and used. This study aimed to investigate the differences in the proteolytic capacity of Lactobacillus helveticus strains B1929 and ATCC 15009 on the fermentation of commercial ultra-pasteurized (UHT) skim milk and reconstituted nonfat dried milk powder (at a comparable protein concentration, 4%). The antihypertensive properties of the fermented milk, measured by angiotensin-I-converting enzyme inhibitory (ACE-I) activity, were compared. The B1929 strain lowered the pH of the milk to 4.13 ± 0.09 at 37°C after 24 h, whereas ATCC 15009 needed 48 h to drop the pH to 4.70 ± 0.18 at 37°C. Two soluble protein fractions, one (CFS1) obtained after fermentation (acidic conditions) and the other (CFS2) after the neutralization (pH 6.70) of the pellet from CFS1 separation, were analyzed for d-/l-lactic acid production, protein concentration, the degree of protein hydrolysis, and ACE-I activity. The CFS1 fractions, dominated by whey proteins, demonstrated a greater degree of protein hydrolysis (7.9%) than CFS2. On the other hand, CFS2, mainly casein proteins, showed a higher level of ACE-I activity (33.8%) than CFS1. Significant differences were also found in the d- and l-lactic acid produced by the UHT milk between the 2 strains. These results attest that milk casein proteins possessed more detectable ACE-I activity than whey fractions, even without a measurable degree of hydrolysis. Findings from this study suggest that careful consideration must be given when selecting the bacterial strain and milk substrate for fermentation.


Asunto(s)
Lactobacillus helveticus , Leche , Animales , Leche/química , Lactobacillus helveticus/química , Hidrólisis , Polvos/análisis , Caseínas/análisis , Temperatura , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Proteínas de la Leche/análisis , Fermentación , Proteína de Suero de Leche/análisis , Angiotensinas/análisis , Angiotensinas/metabolismo
4.
Front Microbiol ; 14: 1304136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293552

RESUMEN

Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.

5.
Int J Microbiol ; 2018: 6234931, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977299

RESUMEN

Information on the biodegradation potential of lake and river microbial communities is essential for watershed management. The water draining into the lake ecosystems often carries a significant amount of suspended sediments, which are transported by rivers and streams from the local drainage basin. The organic carbon processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and apprehend some of these variabilities in the sediments, we sampled six sites: three from the Saint Clair River (SC1, SC2, and SC3) and three from Lake Saint Clair in the spring, summer, fall, and winter of 2016. Here, we investigated the shifts in metabolic profiles of sediment microbial communities, along Saint Clair River and Lake Saint Clair using Biolog EcoPlates, which test for the oxidation of 31 carbon sources. The number of utilized substrates was generally higher in the river sediments (upstream) than in the lake sediments (downstream), suggesting a shift in metabolic activities among microbial assemblages. Seasonal and site-specific differences were also found in the numbers of utilized substrates, which were similar in the summer and fall, and spring and winter. The sediment microbial communities in the summer and fall showed more versatile substrate utilization patterns than spring and winter communities. The functional fingerprint analyses clearly distinguish the sediment microbial communities from the lake sites (downstream more polluted sites), which showed a potential capacity to use more complex carbon substrates such as polymers. This study establishes a close linkage between physical and chemical properties (temperature and organic matter content) of lake and river sediments and associated microbial functional activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA