Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37629003

RESUMEN

Myxozoa is a unique group of obligate endoparasites in the phylum Cnidaria that can cause emerging diseases in wild and cultured fish populations. Recently, we identified a new myxozoan species, Myxobolus bejeranoi, which infects the gills of cultured tilapia while suppressing host immunity. To uncover the molecular mechanisms underlying this successful parasitic strategy, we conducted transcriptomics analysis of M. bejeranoi throughout the infection. Our results show that histones, which are essential for accelerated cell division, are highly expressed even one day after invasion. As the infection progressed, conserved parasitic genes that are known to modulate the host immune reaction in different parasitic taxa were upregulated. These genes included energy-related glycolytic enzymes, as well as calreticulin, proteases, and miRNA biogenesis proteins. Interestingly, myxozoan calreticulin formed a distinct phylogenetic clade apart from other cnidarians, suggesting a possible function in parasite pathogenesis. Sporogenesis was in its final stages 20 days post-exposure, as spore-specific markers were highly expressed. Lastly, we provide the first catalog of transcription factors in a Myxozoa species, which is minimized compared to free-living cnidarians and is dominated by homeodomain types. Overall, these molecular insights into myxozoan infection support the concept that parasitic strategies are a result of convergent evolution.


Asunto(s)
Cnidarios , Myxobolus , Myxozoa , Parásitos , Animales , Myxozoa/genética , Myxobolus/genética , Cnidarios/genética , Calreticulina , Filogenia , División Celular , Peces
2.
Microbiome ; 11(1): 8, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635724

RESUMEN

BACKGROUND: The design of ecologically sustainable and plant-beneficial soil systems is a key goal in actively manipulating root-associated microbiomes. Community engineering efforts commonly seek to harness the potential of the indigenous microbiome through substrate-mediated recruitment of beneficial members. In most sustainable practices, microbial recruitment mechanisms rely on the application of complex organic mixtures where the resources/metabolites that act as direct stimulants of beneficial groups are not characterized. Outcomes of such indirect amendments are unpredictable regarding engineering the microbiome and achieving a plant-beneficial environment. RESULTS: This study applied network analysis of metagenomics data to explore amendment-derived transformations in the soil microbiome, which lead to the suppression of pathogens affecting apple root systems. Shotgun metagenomic analysis was conducted with data from 'sick' vs 'healthy/recovered' rhizosphere soil microbiomes. The data was then converted into community-level metabolic networks. Simulations examined the functional contribution of treatment-associated taxonomic groups and linked them with specific amendment-induced metabolites. This analysis enabled the selection of specific metabolites that were predicted to amplify or diminish the abundance of targeted microbes functional in the healthy soil system. Many of these predictions were corroborated by experimental evidence from the literature. The potential of two of these metabolites (dopamine and vitamin B12) to either stimulate or suppress targeted microbial groups was evaluated in a follow-up set of soil microcosm experiments. The results corroborated the stimulant's potential (but not the suppressor) to act as a modulator of plant beneficial bacteria, paving the way for future development of knowledge-based (rather than trial and error) metabolic-defined amendments. Our pipeline for generating predictions for the selective targeting of microbial groups based on processing assembled and annotated metagenomics data is available at https://github.com/ot483/NetCom2 . CONCLUSIONS: This research demonstrates how genomic-based algorithms can be used to formulate testable hypotheses for strategically engineering the rhizosphere microbiome by identifying specific compounds, which may act as selective modulators of microbial communities. Applying this framework to reduce unpredictable elements in amendment-based solutions promotes the development of ecologically-sound methods for re-establishing a functional microbiome in agro and other ecosystems. Video Abstract.


Asunto(s)
Microbiota , Suelo , Bacterias/genética , Microbiota/genética , Metagenoma , Metagenómica , Rizosfera , Microbiología del Suelo , Raíces de Plantas/microbiología
3.
Microorganisms ; 10(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36296170

RESUMEN

Myxozoa (Cnidaria) is a large group of microscopic obligate endoparasites that can cause emerging diseases, affecting wild fish populations and fisheries. Recently, the myxozoan Myxobolus bejeranoi was found to infect the gills of hybrid tilapia (Nile tilapia (Oreochromis niloticus) × Jordan/blue tilapia (O. aureus)), causing high morbidity and mortality. Here, we used comparative transcriptomics to elucidate the molecular processes occurring in the fish host following infection by M. bejeranoi. Fish were exposed to pond water containing actinospores for 24 h and the effects of minor, intermediate, and severe infections on the sporulation site, the gills, and on the hematopoietic organs, head kidney and spleen, were compared. Enrichment analysis for GO and KEGG pathways indicated immune system activation in gills at severe infection, whereas in the head kidney a broad immune suppression included deactivation of cytokines and GATA3 transcription factor responsible for T helper cell differentiation. In the spleen, the cytotoxic effector proteins perforin and granzyme B were downregulated and insulin, which may function as an immunomodulatory hormone inducing systemic immune suppression, was upregulated. These findings suggest that M. bejeranoi is a highly efficient parasite that disables the defense mechanisms of its fish host hybrid tilapia.

4.
mBio ; 12(2)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653887

RESUMEN

Microbial fuel cells (MFCs) generate energy while aiding the biodegradation of waste through the activity of an electroactive mixed biofilm. Metabolic cooperation is essential for MFCs' efficiency, especially during early colonization. Thus, examining specific ecological processes that drive the assembly of anode biofilms is highly important for shortening startup times and improving MFC performance, making this technology cost-effective and sustainable. Here, we use metagenomics to show that bioaugmentation of the anode surface with a taxonomically defined electroactive consortium, dominated by Desulfuromonas, resulted in an extremely rapid current density generation. Conversely, the untreated anode surface resulted in a highly stochastic and slower biofilm assembly. Remarkably, an efficient anode colonization process was obtained only if wastewater was added, leading to a nearly complete replacement of the bioaugmented community by Geobacter lovleyi Although different approaches to improve MFC startup have been investigated, we propose that only the combination of anode bioaugmentation with wastewater inoculation can reduce stochasticity. Such an approach provides the conditions that support the growth of specific newly arriving species that positively support the fast establishment of a highly functional anode biofilm.IMPORTANCE Mixed microbial communities play important roles in treating wastewater, in producing renewable energy, and in the bioremediation of pollutants in contaminated environments. While these processes are well known, especially the community structure and biodiversity, how to efficiently and robustly manage microbial community assembly remains unknown. Moreover, it has been shown that a high degree of temporal variation in microbial community composition and structure often occurs even under identical environmental conditions. This heterogeneity is directly related to stochastic processes involved in microbial community organization, similarly during the initial stages of biofilm formation on surfaces. In this study, we show that anode surface pretreatment alone is not sufficient for a substantial improvement in startup times in microbial fuel cells (MFCs), as previously thought. Rather, we have discovered that the combination of applying a well-known consortium directly on the anode surface together with wastewater (including the bacteria that they contain) is the optimized management scheme. This allowed a selected colonization process by the wastewater species, which improved the functionality relative to that of untreated systems.


Asunto(s)
Biodegradación Ambiental , Biopelículas/crecimiento & desarrollo , Electrodos , Microbiota , Purificación del Agua/métodos , Bacterias/genética , Bacterias/crecimiento & desarrollo , Fuentes de Energía Bioeléctrica/microbiología , Aguas Residuales/microbiología
5.
Microb Biotechnol ; 13(3): 770-780, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32059079

RESUMEN

This study is an initial description and discussion of the kidney and liver microbial communities of five common fish species sampled from four sites along the Eastern Mediterranean Sea shoreline. The goals of the present study were to establish a baseline dataset of microbial communities associated with the tissues of wild marine fish, in order to examine species-specific microbial characteristics and to screen for candidate pathogens. This issue is especially relevant due to the development of mariculture farms and the possible transmission of pathogens from wild to farmed fish and vice versa. Although fish were apparently healthy, 16S rRNA NGS screening identified three potential fish bacterial pathogens: Photobacterium damselae, Vibrio harveyi and Streptococcus iniae. Based on the distribution patterns and relative abundance, 16 samples were classified as potential pathogenic bacteria-infected samples (PPBIS). Hence, PPBIS prevalence was significantly higher in kidneys than in liver samples and variation was found between the fish species. Significant differences were observed between fish species, organs and sites, indicating the importance of the environmental conditions on the fish microbiome. We applied a consistent sampling and analytical method for monitoring in long-term surveys which may be incorporated within other marine fish pathogens surveys around the world.


Asunto(s)
Acuicultura , Bacterias , Infecciones Bacterianas , Enfermedades de los Peces , Microbiota , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Carga Bacteriana , Enfermedades de los Peces/microbiología , Riñón/microbiología , Hígado/microbiología , Mar Mediterráneo , Microbiota/fisiología , Photobacterium/fisiología , ARN Ribosómico 16S/genética , Streptococcus iniae/fisiología , Vibrio/fisiología
6.
Front Microbiol ; 10: 2142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572346

RESUMEN

Ecosystem dynamics in monomictic lakes are characterized by seasonal thermal mixing and stratification. These physical processes bring about seasonal variations in nutrients and organic matter fluxes, affecting the biogeochemical processes that occur in the water column. Physical and chemical dynamics are generally reflected in seasonal structural changes in the phytoplankton and bacterio-plankton community. In this study, we analyzed, using 16S rRNA amplicon sequencing, the structure of the bacterial community associated with large particles (>20 µm) in Lake Kinneret (Sea of Galilee, Israel), and its associations to phytoplankton populations. The study was carried out during late winter and early spring, a highly dynamic period in terms of thermal mixing, nutrient availability, and shifts in phytoplankton composition. Structural changes in the bacterioplankton population corresponded with limnological variations in the lake. In terms of the entire heterotrophic community, the structural patterns of particle-associated bacteria were mainly correlated with abiotic factors such as pH, ammonia, water temperature and nitrate. However, analysis of microbial taxon-specific correlations with phytoplankton species revealed a strong potential link between specific bacterial populations and the presence of different phytoplankton species, such as the cyanobacterium Microcystis, as well as the dinoflagellates Peridinium and Peridiniopsis. We found that Brevundimonas, a common freshwater genus, and Bdellovibrio, a well-known Gram-negative bacteria predator, were positively associated to Microcystis, suggesting a potentially important role of these three taxa in the microbial ecology of the lake. Our results show that the dynamics of environmental abiotic conditions, rather than specific phytoplankton assemblages, are the main factors positively correlated with changes in the community structure as a whole. Nevertheless, some specific bacteria may interact and be linked with specific phytoplankton, which may potentially control the dynamic patterns of the microbial community.

7.
Front Microbiol ; 8: 1606, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878756

RESUMEN

Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants - wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs.

8.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27402714

RESUMEN

Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects.


Asunto(s)
Endófitos/clasificación , Hongos/fisiología , Variación Genética , Poaceae/microbiología , Triticum/metabolismo
9.
Nat Commun ; 5: 4950, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25232638

RESUMEN

Plant microbiomes are critical to host adaptation and impact plant productivity and health. Root-associated microbiomes vary by soil and host genotype, but the contribution of these factors to community structure and metabolic potential has not been fully addressed. Here we characterize root microbial communities of two disparate agricultural crops grown in the same natural soil in a controlled and replicated experimental system. Metagenomic (genetic potential) analysis identifies a core set of functional genes associated with root colonization in both plant hosts, and metatranscriptomic (functional expression) analysis revealed that most genes enriched in the root zones are expressed. Root colonization requires multiple functional capabilities, and these capabilities are enriched at the community level. Differences between the root-associated microbial communities from different plants are observed at the genus or species level, and are related to root-zone environmental factors.


Asunto(s)
Productos Agrícolas/microbiología , Microbiota , Raíces de Plantas/microbiología , Cucumis/microbiología , ADN/química , Ambiente , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Técnicas Genéticas , Genómica , Genotipo , Metagenómica , Filogenia , Plantas/microbiología , Análisis de Secuencia de ADN , Suelo , Microbiología del Suelo , Triticum/microbiología
10.
Front Plant Sci ; 4: 306, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23964283

RESUMEN

In their natural environment, plants experience multiple biotic interactions and respond to this complexity in an integrated manner. Therefore, plant responses to herbivory are flexible and depend on the context and complexity in which they occur. For example, plant growth promoting rhizobacteria (PGPR) can enhance plant growth and induce resistance against microbial pathogens and herbivorous insects by a phenomenon termed induced systemic resistance (ISR). In the present study, we investigated the effect of tomato (Solanum lycopersicum) pre-inoculation with the PGPR Pseudomonas fluorescens WCS417r, on the performance of the generalist phloem-feeding insect Bemisia tabaci. Based on the ability of P. fluorescens WCS417r to prime for ISR against generalists chewing insects and necrotrophic pathogens, we hypothesized that pre-inoculated plants will strongly resist B. tabaci infestation. In contrast, we discovered that the pre-inoculation treatment increased the tomato plant suitability for B. tabaci which was emphasized both by faster developmental rate and higher survivability of nymph stages on pre-inoculated plants. Our molecular and chemical analyses suggested that the phenomenon is likely to be related to: (I) the ability of the bacteria to reduce the activity of the plant induced defense systems; (II) a possible manipulation by P. fluorescens of the plant quality (in terms of suitability for B. tabaci) through an indirect effect on the rhizosphere bacterial community. The contribution of our study to the pattern proposed for other belowground rhizobacteria and mycorrhizal fungi and aboveground generalist phloem-feeders is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA