Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 12(6): e1001895, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24960609

RESUMEN

The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD). Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor ß-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished ß-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Enfermedad de Huntington/etiología , Neuronas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Wnt/metabolismo , Anciano , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Femenino , Humanos , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Presenilina-1/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Vía de Señalización Wnt
2.
Development ; 140(7): 1583-93, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23482493

RESUMEN

CLIPR-59 is a new member of the cytoplasmic linker proteins (CLIP) family mainly localized to the trans-Golgi network. We show here that Clipr-59 expression in mice is restricted to specific pools of neurons, in particular motoneurons (MNs), and progressively increases from embryonic day 12.5 (E12.5) until the first postnatal days. We generated a Clipr-59 knockout mouse model that presents perinatal lethality due to respiratory defects. Physiological experiments revealed that this altered innervation prevents the normal nerve-elicited contraction of the mutant diaphragm that is reduced both in amplitude and fatigue-resistance at E18.5, despite unaffected functional muscular contractility. Innervation of the mutant diaphragm is not altered until E15.5, but is then partially lost in the most distal parts of the muscle. Ultrastructural observations of neuromuscular junctions (NMJs) in the distal region of the diaphragm reveal a normal organization, but a lower density of nerve terminals capped by terminal Schwann cells in E18.5 mutant when compared with control embryos. Similar defects in NMJ stability, with a hierarchy of severity along the caudo-rostral axis, are also observed in other muscles innervated by facial and spinal MNs in Clipr-59 mutant mice. Clipr-59 deficiency therefore affects axon maintenance but not axon guidance toward muscle targets. Thus, CLIPR-59 is involved in the stabilization of specific motor axons at the NMJ during mouse late embryogenesis and its role is crucial for mouse perinatal development.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas Asociadas a Microtúbulos/fisiología , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Embrión de Mamíferos , Desarrollo Embrionario/fisiología , Femenino , Edad Gestacional , Homeostasis/genética , Homeostasis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Embarazo , Médula Espinal/embriología , Médula Espinal/metabolismo
3.
J Neurosci ; 32(36): 12630-40, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22956852

RESUMEN

One of the current challenges of neurodegenerative disease research is to determine whether signaling pathways that are essential to cellular homeostasis might contribute to neuronal survival and modulate the pathogenic process in human disease. In Caenorhabditis elegans, sir-2.1/SIRT1 overexpression protects neurons from the early phases of expanded polyglutamine (polyQ) toxicity, and this protection requires the longevity-promoting factor daf-16/FOXO. Here, we show that this neuroprotective effect also requires the DAF-16/FOXO partner bar-1/ß-catenin and putative DAF-16-regulated gene ucp-4, the sole mitochondrial uncoupling protein (UCP) in nematodes. These results fit with a previously proposed mechanism in which the ß-catenin FOXO and SIRT1 proteins may together regulate gene expression and cell survival. Knockdown of ß-catenin enhanced the vulnerability to cell death of mutant-huntingtin striatal cells derived from the HdhQ111 knock-in mice. In addition, this effect was compensated by SIRT1 overexpression and accompanied by the modulation of neuronal UCP expression levels, further highlighting a cross-talk between ß-catenin and SIRT1 in the modulation of mutant polyQ cytoxicity. Taken together, these results suggest that integration of ß-catenin, sirtuin and FOXO signaling protects from the early phases of mutant huntingtin toxicity.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/fisiología , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Tejido Nervioso/toxicidad , Transducción de Señal/fisiología , Sirtuinas/fisiología , Factores de Transcripción/biosíntesis , beta Catenina/biosíntesis , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Proteínas del Citoesqueleto/genética , Factores de Transcripción Forkhead , Proteína Huntingtina , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Sirtuinas/genética , Factores de Transcripción/genética , beta Catenina/genética
4.
Hum Mol Genet ; 20(2): 294-300, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20977989

RESUMEN

Defects in cellular energy metabolism represent an early feature in a variety of human neurodegenerative diseases. Recent studies have shown that targeting energy metabolism can protect against neuronal cell death in such diseases. Here, we show that meclizine, a clinically used drug that we have recently shown to silence oxidative metabolism, suppresses apoptotic cell death in a murine cellular model of polyglutamine (polyQ) toxicity. We further show that this protective effect extends to neuronal dystrophy and cell death in Caenorhabditis elegans and Drosophila melanogaster models of polyQ toxicity. Meclizine's mechanism of action is not attributable to its anti-histaminergic or anti-muscarinic activity, but rather, strongly correlates with its ability to suppress mitochondrial respiration. Since meclizine is an approved drug that crosses the blood-brain barrier, it may hold therapeutic potential in the treatment of polyQ toxicity disorders, such as Huntington's disease.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Meclizina/farmacología , Meclizina/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila melanogaster/efectos de los fármacos , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Péptidos/efectos adversos
5.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354498

RESUMEN

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertrofia/enzimología , Hipertrofia/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Mapeo de Interacción de Proteínas , Ubiquitinación
6.
J Neurosci ; 27(39): 10323-32, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17898204

RESUMEN

During the embryonic development of the hindbrain, movements of neuronal clusters allow the formation of mature "pools", in particular for inferior olivary (ION) and facial motor (fMN) nuclei. The cellular mechanisms of neuron clustering remain uncharacterized. We report that the absence of the Rho-guanine exchange factor Trio, which can activate both RhoG and Rac1 in vivo, prevents the proper formation of ION and fMN subnuclei. Rac1, but not RhoG, appears to be a downstream actor in Trio-induced lamellation. In addition, we report that Cadherin-11 is expressed by a subset of neurons through the overall period of ION and fMN parcellations, and defects observed in trio mutant mice are located specifically in Cadherin-11-expressing regions. Moreover, endogenous Cadherin-11 is found in a complex with Trio when lamellation occurs. Altogether, those results establish a link between Trio activity, the subsequent Rac1 activation, and neuronal clusters organization, as well as a possible recruitment of the Cadherin-11 adhesive receptor to form a complex with Trio.


Asunto(s)
Cadherinas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Neuronas Motoras/fisiología , Neuropéptidos/fisiología , Núcleo Olivar/fisiología , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Rombencéfalo/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Nervio Facial/fisiología , Ratones , Rombencéfalo/embriología , Proteína de Unión al GTP rac1
9.
J Cell Sci ; 120(Pt 4): 702-11, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17264146

RESUMEN

Orderly progression through the eukaryotic cell cycle is a complex process involving both regulation of cyclin dependent kinase activity and control of specific substrate-Cdk interactions. In Saccharomyces cerevisiae, the mitotic cyclin Clb2 has a central role in regulating the onset of anaphase and in maintaining the cellular shape of the bud by inhibiting growth polarization induced in G1. However, how Clb2 and the partially redundant cyclin Clb1 confer specificity to Cdk1 in these processes still remains unclear. Here, we show that Clb2 mutants impaired in nuclear import or export are differentially affected for subsets of Clb2 functions while remaining fully functional for others. Our data support a direct role of the cytoplasmic pool of Clb1,2-Cdk1 in terminating cytoskeleton and growth polarization, independently of G1 cyclin transcriptional regulation. By contrast, the nuclear form of the cyclin is required for timely initiation of anaphase. Clb2 localization influences its stage-specific degradation as well. We report that Clb2 trapped in the cytoplasm is stabilized during anaphase but not at the time of mitotic exit. Altogether, our results demonstrate that the subcellular localization of the mitotic cyclin Clb2 is one of the key determinants of its biological function.


Asunto(s)
Compartimento Celular , Ciclina B/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Ciclina B/genética , Proteínas Fúngicas/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Development ; 132(8): 1807-18, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15772136

RESUMEN

Targeted disruption of effectors molecules of the apoptotic pathway have demonstrated the occurrence and magnitude of early programmed cell death (EPCD), a form of apoptosis that affects proliferating and newly differentiated cells in vertebrates, and most dramatically cells of the central nervous system (CNS). Little is known about the molecular pathways controlling apoptosis at these early developmental stages, as the roles of EPCD during patterning of the developing nervous system. We describe a new function, in Xenopus neurodevelopment, for a highly conserved homeodomain protein Barhl2. Barhl2 promotes apoptosis in the Xenopus neuroectoderm and mesoderm, acting as a transcriptional repressor, through a mechanism that cannot be attributed to an unspecific cellular stress response. We show that the pro-apoptotic activity of Barhl2 is essential during normal neural plate formation as it limits the number of chordin- and Xshh-expressing cells in the prospective notochord and floorplate, which act as organizing centers. Our findings show that Barhl2 is part of a pathway regulating EPCD. They also provide evidence that apoptosis plays an important role in regulating the size of organizing centers.


Asunto(s)
Apoptosis/genética , Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Sistema Nervioso Central/metabolismo , Análisis por Conglomerados , Cartilla de ADN , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ensayo de Inmunoadsorción Enzimática , Galactósidos , Glicoproteínas/metabolismo , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Indoles , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Filogenia , Plásmidos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transactivadores/metabolismo , Xenopus/genética , Proteínas de Xenopus/genética
11.
J Biol Chem ; 278(33): 30597-604, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12775724

RESUMEN

The Ral signaling pathway is critically involved in Ras-dependent oncogenesis. One of its key actors, RLIP/RalBP1, which participates in receptor endocytosis during interphase, is also involved in mitotic processes when endocytosis is switched off. During mitosis, RLIP76 is located on the duplicated centrosomes and is required for their proper separation and movement to the poles. We have looked for actors that associate with RLIP during mitosis. We show here that RLIP/RalBP1 interacts with an active p34cdc2.cyclinB1 (cdk1) enzyme and that this interaction is crucial for the mitotic phosphorylation of Epsin that, once phosphorylated, is no longer competent for endocytosis. We show also that this latter phosphorylation is dependent on Ral signaling. We propose that RLIP/RalBP1 is used as a platform by the mitotic cdk1 to facilitate the phosphorylation of Epsin, which makes Epsin incompetent for endocytosis during mitosis, when endocytosis is switched off.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteína Quinasa CDC2/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Proteínas Activadoras de GTPasa , Mitosis/fisiología , Neuropéptidos/metabolismo , Proteínas de Transporte Vesicular , Proteínas de Unión al GTP ral/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Proteínas Portadoras/genética , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Drosophila , Drosophila melanogaster , Fase G2/fisiología , Células HeLa , Humanos , Técnicas In Vitro , Hormonas Juveniles/metabolismo , Fosforilación , Transducción de Señal/fisiología , Transfección , Técnicas del Sistema de Dos Híbridos
12.
Biochem Biophys Res Commun ; 300(1): 121-7, 2003 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-12480530

RESUMEN

We designed a screen to identify starfish oocyte proteins able to bind monomeric cyclin B by affinity chromatography on a cyclin B splice variant displaying low affinity for cdc2. We identified a 15kDa protein previously described as a cdk-binding protein [Biochim. Biophys. Acta Mol. Cell Res. 1589 (2002) 219-231]. Cybip is encoded by a single polymorphic gene and the native protein is matured by cleaving a signal peptide. We firmly establish the fact that it is a true cyclin B-binding protein, since the recombinant protein binds recombinant cyclin B in absence of any cdk. Finally, we show that the microinjection of GST-cybip, and of anti-cybip antibody, in maturing starfish oocytes, inhibits H1 kinase and MPF inactivation, and first polar body emission.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclina B/metabolismo , Meiosis/fisiología , Estrellas de Mar/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Cromatografía de Afinidad , Femenino , Factor Promotor de Maduración/metabolismo , Meiosis/genética , Datos de Secuencia Molecular , Peso Molecular , Oocitos/citología , Oocitos/metabolismo , Polimorfismo Genético , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Estrellas de Mar/citología , Estrellas de Mar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA