Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Am Chem Soc ; 145(8): 4384-4388, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36798970

RESUMEN

Hydrogen peroxide is an environmentally friendly oxidizing agent but current synthetic methods are wasteful. This is a result of the high flammability of H2/O2 mixtures and/or the requirement for cocatalysts. In this paper, we report the synthesis of H2O2 by means of a homogeneous catalyst, which allows a safe, one-pot synthesis in water, using only H2 and O2. This catalyst is capable of removing electrons from H2, storing them for the reduction of O2, and then permitting the protonation of the reduced oxygen to H2O2. The turnover number (TON) is 910 under an H2/O2 (95/5) atmosphere (1.9 MPa) for 12 h at 23 °C, which is the highest of any homogeneous catalyst. Furthermore, we propose a reaction mechanism based on two crystal structures.

2.
Chemistry ; 29(69): e202302297, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37743326

RESUMEN

Chemists have long sought to regulate the reactivity of H2 , to yield hydride ions, hydrogen atoms, or electrons on demand. One source of inspiration for achieving this control is [NiFe]hydrogenase ([NiFe]H2 ase), which reacts with H2 to form various hydrogen active species such as NiIII hydride species, NiII hydride species, and NiI low-valent species. Chemists have attempted to synthesize these hydrogen active species not only as models for the active species of [NiFe]H2 ase, but also as electron transfer catalysts. However, the synthesis of NiI complex directly from H2 has not been reported. This paper reports the first example of a single-step synthesis of a NiI complex, via reaction of a NiII complex with H2 , stable for over 3 months at room temperature and we further demonstrate a reductive coupling of acridinium ions as part of a reaction cycle.

3.
Chemistry ; 27(69): 17326-17330, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34636099

RESUMEN

This paper reports the first example of C-H arylation of benzene under mild conditions, using H2 as an electron source {turnover numbers (TONs)=0.7-2.0 for 24 h}. The reaction depends on a Rh-based electron storage catalyst, and proceeds at room temperature and in aqueous solution. Furthermore, the H2 is inactive during the radical transfer step, greatly reducing unwanted side reactions.

4.
Inorg Chem ; 59(2): 1014-1028, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31898897

RESUMEN

One of the challenges in utilizing hydrogen gas (H2) as a sustainable fossil fuel alternative is the inhibition of H2 oxidation by carbon monoxide (CO), which is involved in the industrial production of H2 sources. To solve this problem, a catalyst that selectively oxidizes either CO or H2 or one that co-oxidizes H2 and CO is needed. Recently, a NiIr catalyst [NiIICl(X)IrIIICl(η5-C5Me5)], (X = N,N'-dimethyl-3,7-diazanonane-1,9-dithiolate), which efficiently and selectively oxidizes either H2 or CO depending on the pH, has been developed (Angew. Chem. Int. Ed. 2017, 56, 9723-9726). In the present work, density functional theory (DFT) calculations are employed to elucidate the pH-dependent reaction mechanisms of H2 and CO oxidation catalyzed by this NiIr catalyst. During H2 oxidation, our calculations suggest that dihydrogen binds to the Ir center and generates an Ir(III)-dihydrogen complex, followed by subsequent isomerization to an Ir(V)-dihydride species. Then, a proton is abstracted by a buffer base, CH3COO-, resulting in the formation of a hydride complex. The catalytic cycle completes with electron transfer from the hydride complex to a protonated 2,6-dichlorobenzeneindophenol (DCIP) and a proton transfer from the oxidized hydride complex to a buffer base. The CO oxidation mechanism involves three distinct steps, i.e., (1) formation of a metal carbonyl complex, (2) formation of a metallocarboxylic acid, and (3) conversion of the metallocarboxylic acid to a hydride complex. The formation of the metallocarboxylic acid involves nucleophilic attack of OH- to the carbonyl-C followed by a large structural change with concomitant cleavage of the Ir-S bond and rotation of the COOH group along the NiIr axis. During the conversion of the metallocarboxylic acid to the hydride complex, intramolecular proton transfer followed by removal of CO2 leads to the formation of the hydride complexes. In addition, the barrier heights for the binding of small molecules (H2, OH-, H2O, and CO) to Ir were calculated, and the results indicated that dissociation from Ir is a faster process than the binding of H2O and H2. These calculations indicate that H2 oxidation is inhibited by CO and OH- and thus prefers acidic conditions. In contrast, the CO oxidation reactions occur more favorably under basic conditions, as the formation of the metallocarboxylic acid involves OH- attack to a carbonyl-C and the binding of OH- to Ni largely stabilizes the triplet spin state of the complex. Taken together, these calculations provide a rationale for the experimentally observed pH-dependent, selective oxidations of H2 and CO.

5.
Inorg Chem ; 59(1): 415-422, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31829576

RESUMEN

An iridium aqua complex [IrIII(η5-C5Me5){bpy(COOH)2}(H2O)]2+ under visible light irradiation has been experimentally reported to form an iridium-oxo (Ir-oxo) complex [IrV(η5-C5Me5){bpy(COOH)2}(O)]2+, which oxidizes H2O to O2. However, the mechanism for the formation of this Ir-oxo complex remains unclear, due to the difficulties in observing the unstable Ir-oxo complex and computing light-induced systems having different numbers of electrons. In this study, we perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to investigate more in detail our previously proposed deprotonation and light-induced oxidation reactions composing the formation of the Ir-oxo complex. In particular, we discuss effects of light irradiation and WO3 support on the formation of the Ir-oxo complex. We suggest two distinct mechanisms, that is, direct and indirect for the light-induced oxidation. In the direct mechanism electrons are directly transferred from the occupied π* orbitals of IrIII-OH or IrIV=O• to the conduction band of the WO3 surface, whereas in the indirect mechanism electrons are first excited from the valence band to the conduction band of the WO3 surface due to the UV light, and then the resultant electron hole oxidizes the Ir complex. In the direct mechanism, in particular, we found that the lowest energy of the anode's conduction band determines the adsorption wavelength of the light irradiation, enabling us to predict alternative semiconductor anodes for more efficient formation of the Ir-oxo complex.

6.
Inorg Chem ; 58(11): 7274-7284, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31094515

RESUMEN

While hydrogenase and photosystem II enzymes are known to oxidize H2 and H2O, respectively, a recently reported iridium aqua complex [IrIII(η5-C5Me5){bpy(COOH)2}(H2O)]2+ is able to oxidize both of the molecules and generate energies as in the fuel and solar cells ( Ogo ChemCatChem 2017 , 9 , 4024 - 4028 ). To understand the mechanism behind such an interesting bifunctional catalyst, in the present study, we perform density functional theory (DFT) calculations on the dual catalytic cycle of H2 and H2O oxidations by the iridium aqua complex. In the H2 oxidation, we found that the H-H bond is easily cleaved in a heterolytic fashion, and the resultant iridium hydride complex is significantly stabilized by the presence of H2O molecules, due to dihydrogen bond. The rate-determining step of this reaction is found to be the H2O → H2 ligand substitution with an activation energy of 10.7 kcal/mol. In the H2O oxidation, an iridium oxo complex originating from an oxidation of the iridium aqua complex forms a hydroperoxide complex, where an O-O bond is formed with an activation energy of 21.0 kcal/mol. Such a relatively low activation barrier is possible only when at least two H2O molecules are present in the reaction, allowing the water nucleophilic attack (WNA) mechanism to take place. The present study suggests and discusses in detail six reaction steps required for the dual catalytic cycle to complete.

7.
Angew Chem Int Ed Engl ; 57(48): 15792-15796, 2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30303292

RESUMEN

The development of hydrogen fuel cells is greatly hindered by the unwanted generation of H2 O2 at the cathode. A non-Pt cathode catalyst is now shown to be capable of simultaneously reducing both O2 and H2 O2 , thus rendering H2 O2 a useful part of the feed stream. The applicability of this unique catalyst is demonstrated by employing it in a fuel cell running on H2 /CO and O2 /H2 O2 .

8.
Sci Technol Adv Mater ; 18(1): 870-876, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152019

RESUMEN

We report the mechanistic investigation of catalytic H2 evolution from formic acid in water using a formate-bridged dinuclear Ru complex as a formate hydrogen lyase model. The mechanistic study is based on isotope-labeling experiments involving hydrogen isotope exchange reaction.

9.
Angew Chem Int Ed Engl ; 56(33): 9723-9726, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28585418

RESUMEN

The ability to catalyze the oxidation of both H2 and CO in one reaction pot would be a major boon to hydrogen technology since CO is a consistent contaminant of H2 supplies. Here, we report just such a catalyst, with the ability to catalyze the oxidation of either or both H2 and CO, based on the pH value. This catalyst is based on a NiIr core that mimics the chemical function of [NiFe]hydrogenase in acidic media (pH 4-7) and carbon monoxide dehydrogenase in basic media (pH 7-10). We have applied this catalyst in a demonstration fuel cell using H2 , CO, and H2 /CO (1/1) feeds as fuels for oxidation at the anode. The power density of the fuel cell depends on the pH value in the media of the fuel cell and shows a similar pH dependence in a flask. We have isolated and characterized all intermediates in our proposed catalytic cycles.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Complejos Multienzimáticos/metabolismo , Aldehído Oxidorreductasas/química , Biocatálisis , Monóxido de Carbono/química , Hidrógeno/química , Concentración de Iones de Hidrógeno , Hidrogenasas/química , Complejos Multienzimáticos/química , Oxidación-Reducción
10.
Inorg Chem ; 55(13): 6609-15, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27326826

RESUMEN

Coordination environment of the Tb(3+) ion in oxygen-sensitive luminescent complexes can be successfully controlled through the size of alkyl substituents on ligands {((RMe)ArOH)4cyclen} (R = tBu or Me; cyclen = 1,4,7,10-tetraazacyclododecane); a newly prepared eight-coordinate complex 1(tBu) shows higher oxygen sensitivity (KSV = 17 600) and lower luminescence quantum yield (Φ = 0.67 under N2) than those of the previously reported seven-coordinate analogues 1(Me) and [{((MeMe)ArO)3tacn}Tb(III)(THF)] (KSV = 12 600 and 8300, Φ = 0.91 and 0.91 under N2, respectively; tacn = 1,4,7-triazacyclononane; THF = tetrahydrofuran). The oxygen-sensitive mechanism is discussed on the basis of the photophysical properties of the corresponding Gd(III) complexes.

11.
Angew Chem Int Ed Engl ; 55(2): 724-7, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26509430

RESUMEN

Dioxygen-tolerant [NiFe] hydrogenases catalyze not only the conversion of H2 into 2 H(+) and 2 e(-) but also the reduction of O2 to H2O. Chemists have sought to mimic such bifunctional catalysts with structurally simpler compounds to facilitate analysis and improvement. Herein, we report a new [NiFe]-based catalyst for O2 reduction via an O2 adduct. Structural investigations reveal the first example of a side-on iron(IV) peroxo complex.


Asunto(s)
Hierro/química , Oxígeno/química , Hidrogenasas/química , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja
12.
Chem Rec ; 14(3): 397-409, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24890792

RESUMEN

This article summarizes the development of a range of organometallic, biomimetic analogues of [NiFe]hydrogenases and their employment in a new generation of H2 -O2 fuel cells. It begins with a summary of O2 -sensitive and O2 -tolerant enzyme chemistry before detailing the properties and functionality of our biomimetic complexes, including: the first ever fully functional model, selective H2 and O2 activation, and the first catalyst using only common metals. These systems are centered on Ni-Fe, Ni-Ru, Ir-Ir, and Rh-Rh cores and use a range of ligands that all follow a set of design principles described herein.

13.
Extremophiles ; 18(2): 363-73, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24414928

RESUMEN

Many types of superoxide dismutases have been purified and characterized from various bacteria, however, a psychrophilic Mn-superoxide dismutase (MnSOD) has not yet been reported. Here, we describe the purification and the biochemical characterization of the psychrophilic MnSOD from Exiguobacterium sp. strain OS-77 (EgMnSOD). According to 16S rRNA sequence analysis, a newly isolated bacterium strain OS-77 belongs to the genus Exiguobacterium. The optimum growth temperature of the strain OS-77 is 20 °C. The EgMnSOD is a homodimer of 23.5 kDa polypeptides determined by SDS-PAGE and gel filtration analysis. UV-Vis spectrum and ICP-MS analysis clearly indicated that the homogeneously purified enzyme contains only a Mn ion as a metal cofactor. The optimal reaction pH and temperature of the enzyme were pH 9.0 and 5 °C, respectively. Notably, the purified EgMnSOD was thermostable up to 45 °C and retained 50% activity after 21.2 min at 60 °C. The differential scanning calorimetry also indicated that the EgMnSOD is thermostable, exhibiting two protein denaturation peaks at 65 and 84 °C. The statistical analysis of amino acid sequence and composition of the EgMnSOD suggests that the enzyme retains psychrophilic characteristics.


Asunto(s)
Bacillales/enzimología , Proteínas Bacterianas/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Bacillales/genética , Bacillales/aislamiento & purificación , Proteínas Bacterianas/química , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Superóxido Dismutasa/química
14.
Angew Chem Int Ed Engl ; 53(34): 8895-8, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24895095

RESUMEN

Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1 mg of [NiFe]S77 or Pt) at 50 mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100 % after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt.


Asunto(s)
Citrobacter/enzimología , Electrodos , Hidrógeno/química , Hidrogenasas/química , Platino (Metal)/química , Fuentes de Energía Bioeléctrica , Espectroscopía Dieléctrica , Oxidación-Reducción
15.
J Biosci Bioeng ; 137(3): 179-186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238241

RESUMEN

C-phycocyanin (CPC), which contains open-chain tetrapyrroles, is a major light-harvesting red-fluorescent protein with an important role in aquatic photosynthesis. Recently, we reported a non-conventional CPC from Thermoleptolyngbya sp. O-77 (CPCO77) that contains two different structures, i.e., a hexameric structure and a non-conventional octameric structure. However, the assembly and disassembly mechanisms of the non-conventional octameric form of CPC remain unclear. To understand this assembly mechanism, we performed an in vitro experiment to study the disassembly and reassembly behaviors of CPC using isolated CPC subunits. The dissociation of the CPCO77 subunit was performed using a Phenyl-Sepharose column in 20 mM potassium phosphate buffer (pH 6.0) containing 7.0 M urea. For the first time, crystals of isolated CPC subunits were obtained and analyzed after separation. After the removal of urea from the purified α and ß subunits, we performed an in vitro reassembly experiment for CPC and analyzed the reconstructed CPC using spectrophotometric and X-ray crystal structure analyses. The crystal structure of the reassembled CPC was nearly identical to that of the original CPCO77. The findings of this study indicate that the octameric CPCO77 is a naturally occurring form in the thermophilic cyanobacterium Thermoleptolyngbya sp. O-77.


Asunto(s)
Fotosíntesis , Ficocianina , Potasio , Proteína Fluorescente Roja , Urea
16.
JACS Au ; 4(4): 1615-1622, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665645

RESUMEN

Have you ever imagined reactions of alkenes with hydrogen that result in anything other than hydrogenation or hydrogenative C-C coupling? We have long sought to develop not only hydrogenation catalysts that activate H2 as hydride ions but also electron transfer catalysts that activate H2 as a direct electron donor. Here, we report the reductive cyclopropanation of alkenes using an iridium electron storage catalyst with H2 as the electron source without releasing metal waste from the reductant. We discuss the catalytic mechanism with selectivity to give the trans-isomer. These findings are based on the isolation of three complexes and density functional theory calculations.

17.
J Biosci Bioeng ; 136(3): 182-189, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37400329

RESUMEN

Biocatalytic CO2 reduction into formate is a crucial strategy for developing clean energy because formate is considered as one of the promising hydrogen storage materials for achieving net-zero carbon emissions. Here, we developed an efficient biocatalytic system to produce formate selectively by coupling two enzymatic activities of H2 oxidation and CO2 reduction using encapsulated bacterial cells of Citrobacter sp. S-77. The encapsulated whole-cell catalyst was made by living cells depositing into polyvinyl alcohol and gellan gum cross-linked by calcium ions to form hydrogel beads. Formate production using encapsulated cells was carried out under the resting state conditions in the gas mixture of H2/CO2 (70:30, v/v%). The whole-cell biocatalyst showed highly efficient and selective catalytic production of formate, reaching the specific rate of formate production of 110 mmol L-1· gprotein-1·h-1 at 30 °C, pH 7.0, and 0.1 MPa. The encapsulated cells can be reused at least 8 times while keeping their high catalytic activities for formate production under mild reaction conditions.


Asunto(s)
Dióxido de Carbono , Hidrógeno , Biocatálisis , Catálisis , Formiatos
18.
Bioresour Technol ; 390: 129921, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884095

RESUMEN

Bacterial membranes shield the intracellular compartment by selectively allowing unwanted substances to enter in, which in turn reduces overall catalytic efficiency. This report presents a model system using the isolated plasma membranes of Citrobacter sp. S-77 that harbor oxygen-stable [NiFe]hydrogenase and [Mo]formate dehydrogenase, which are integrated into a natural catalytic nanodevice through an electron transfer relay. This naturally occurring nanodevice exhibited selectivity and efficiency in catalyzing the H2-driven conversion of CO2 to formate with the rate of 817 mmol·L-1·gprotein-1·h-1 under mild conditions of 30 °C, pH 7.0, and 0.1 MPa. When the isolated plasma membranes of Citrobacter sp. S-77 was immobilized with multi-walled carbon nanotubes and encapsulated in hydrogel beads of gellan-gum cross-linked with calcium ions, the catalyst for formate production remained stable over 10 repeated uses. This paper reports the first case of efficient and selective formate production from H2 and CO2 using bacterial plasma membranes.


Asunto(s)
Dióxido de Carbono , Nanotubos de Carbono , Humanos , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Membrana Celular/metabolismo , Formiato Deshidrogenasas , Formiatos/metabolismo
19.
Chem Commun (Camb) ; 59(100): 14795-14798, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38018815

RESUMEN

We present an Ir complex that extracts electrons from H2 at room temperature and stores them as a H2-derived energy carrier (H2EC) at room temperature. Furthermore, we demonstrate that this complex reduces CO2 to a metal-CO22- species at room temperature, and present the first electrospray ionisation mass spectrum for this compound.

20.
RSC Adv ; 12(20): 12253-12257, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35496339

RESUMEN

CH4 conversion is one of the most challenging chemical reactions due to its inertness in terms of physical and chemical properties. We have achieved photo-induced C-H bond breaking of CH4 and successive C-O bond formation to form CH3OH concomitant with HCHO by an organometallic Ru complex with O2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA