Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 50(14): 8080-8092, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35849342

RESUMEN

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.


Asunto(s)
SARS-CoV-2 , Proteínas no Estructurales Virales , Regiones no Traducidas 5' , Secuencia de Bases , COVID-19/virología , Factor 4E Eucariótico de Iniciación/genética , Humanos , Biosíntesis de Proteínas , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Viral/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética
2.
J Chem Ecol ; 47(8-9): 768-776, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34185213

RESUMEN

In natural and agricultural ecosystems, plants are often simultaneously or sequentially exposed to combinations of stressors. Here we tested whether limited water availability (LWA) affects plant response to insect herbivory using two populations of Eruca sativa from desert and Mediterranean habitats that differ in their induced defenses. Considering that such differences evolved as responses to biotic and possibly abiotic stress factors, the two populations offered an opportunity to study ecological aspects in plant response to combined stresses. Analysis of chemical defense mechanisms showed that LWA significantly induced total glucosinolate concentrations in the Mediterranean plants, but their concentrations were reduced in the desert plants. However, LWA, with and without subsequent jasmonate elicitation, significantly induced the expression of proteinase inhibitor in the desert plants. Results of a no-choice feeding experiment showed that LWA significantly increased desert plant resistance to Spodoptera littoralis larvae, whereas it did not affect the relatively strong basal resistance of the Mediterranean plants. LWA and subsequent jasmonate elicitation increased resistance against the generalist insect in Mediterranean plants, possibly due to both increased proteinase inhibitor expression and glucosinolate accumulation. The effect of LWA on the expression of genes involved in phytohormone signaling, abscisic acid (ABA-1) and jasmonic acid (AOC1), and the jasmonate responsive PDF1.2, suggested the involvement of abscisic acid in the regulation of defense mechanisms in the two populations. Our results indicate that specific genotypic responses should be considered when estimating general patterns in plant response to herbivory under water deficiency conditions.


Asunto(s)
Brassicaceae/metabolismo , Ecosistema , Spodoptera/fisiología , Agua/química , Ácido Abscísico/metabolismo , Animales , Brassicaceae/química , Ciclopentanos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Clima Desértico , Inhibidores Enzimáticos/metabolismo , Expresión Génica/efectos de los fármacos , Glucosinolatos/análisis , Glucosinolatos/metabolismo , Glucosinolatos/farmacología , Herbivoria/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/fisiología , Región Mediterránea , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Spodoptera/crecimiento & desarrollo , Estrés Fisiológico , Agua/metabolismo
3.
J Evol Biol ; 33(2): 237-246, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31631428

RESUMEN

Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long-standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade-off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti-nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade-off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Brassicaceae/fisiología , Ecosistema , Defensa de la Planta contra la Herbivoria/fisiología , Brassicaceae/efectos de los fármacos , Brassicaceae/parasitología , Ciclopentanos/farmacología , Oxilipinas/farmacología
4.
BMC Genomics ; 20(1): 843, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718552

RESUMEN

BACKGROUND: Intraspecific variations among induced responses might lead to understanding of adaptive variations in defense strategies against insects. We employed RNA-Seq transcriptome screening to elucidate the molecular basis for phenotypic differences between two populations of Eruca sativa (Brassicaceae), in defense against larvae of the generalist and specialist insects, Spodoptera littoralis and Pieris brassicae, respectively. The E. sativa populations originated from desert and Mediterranean sites, where the plants grow in distinct habitats. RESULTS: Responses to elicitation of the plants' defenses against wounding and insect herbivory resulted in more upregulated transcripts in plants of the Mediterranean population than in those of the desert. PCA analysis differentiated between the two populations and between the elicitation treatments. Comprehensive analysis indicated that defense responses involved induction of the salicylic acid and jasmonic acid pathways in plants of the desert and Mediterranean populations, respectively. In general, the defense response involved upregulation of the aliphatic glucosinolates pathway in plants of the Mediterranean population, whereas herbivory caused downregulation of this pathway in desert plants. Further quantitative RT-PCR analysis indicated that defense response in the desert plants involved higher expression of nitrile-specifier protein (NSP) than in the Mediterranean plants, suggesting that in the desert plants glucosinolates breakdown products are directed to simple-nitriles rather than to the more toxic isothiocyanates. In addition, the defense response in plants of the desert population involved upregulation of flavonoid synthesis and sclerophylly. CONCLUSIONS: The results indicated that differing defense responses in plants of the two populations are governed by different signaling cascades. We suggest that adaptive ecotypic differentiation in defense strategies could result from generalist and specialist herbivore pressures in the Mediterranean and desert populations, respectively. Moreover, the defense responses in plants of the desert habitat, which include upregulation of mechanical defenses, also could be associated with their dual role in defense against both biotic and abiotic stresses.


Asunto(s)
Brassicaceae/genética , Herbivoria/genética , Transcriptoma , Animales , Brassicaceae/metabolismo , Mariposas Diurnas/fisiología , Regulación de la Expresión Génica de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Spodoptera/fisiología
5.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31003984

RESUMEN

Microbial ecosystems tightly associated with a eukaryotic host are widespread in nature. The genetic and metabolic networks of the eukaryotic hosts and the associated microbes have coevolved to form a symbiotic relationship. Both the Gram-positive Bacillus subtilis and the Gram-negative Serratia plymuthica can form biofilms on plant roots and thus can serve as a model system for the study of interspecies interactions in a host-associated ecosystem. We found that B. subtilis biofilms expand collectively and asymmetrically toward S. plymuthica, while expressing a nonribosomal antibiotic bacillaene and an extracellular protease. As a result, B. subtilis biofilms outcompeted S. plymuthica for successful colonization of the host. Strikingly, the plant host was able to enhance the efficiency of this killing by inducing bacillaene synthesis. In turn, B. subtilis biofilms increased the resistance of the plant host to pathogens. These results provide an example of how plant-bacterium symbiosis promotes the immune response of the plant host and the fitness of the associated bacteria.IMPORTANCE Our study sheds mechanistic light on how multicellular biofilm units compete to successfully colonize a eukaryote host, using B. subtilis microbial communities as our lens. The microbiota and its interactions with its host play various roles in the development and prevention of diseases. Using competing beneficial biofilms that are essential microbiota members on the plant host, we found that B. subtilis biofilms activate collective migration to capture their prey, followed by nonribosomal antibiotic synthesis. Plant hosts increase the efficiency of antibiotic production by B. subtilis biofilms, as they activate the synthesis of polyketides; therefore, our study provides evidence of a mechanism by which the host can indirectly select for beneficial microbiota members.


Asunto(s)
Antibacterianos/biosíntesis , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Brassicaceae/microbiología , Ecosistema , Interacciones Huésped-Patógeno , Raíces de Plantas/microbiología , Polienos/metabolismo , Serratia/genética , Serratia/crecimiento & desarrollo , Serratia/fisiología
6.
J Insect Sci ; 19(3)2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31087084

RESUMEN

Plants of Eruca sativa Mill. (Brassicaceae) from desert and Mediterranean populations in Israel differ in flower color and size. In the desert habitat, the population has higher abundance of flowers with cream color and longer petals, whereas in the Mediterranean habitat, the population has higher abundance of flowers with yellow and shorter petals. Choice experiments with honey bee foragers (Apis mellifera Linn., Apidae, Hymenoptera), the main pollinator in the natural habitat in Israel, confirmed that they are more attracted to the yellow flower morph than to the cream one. A proboscis extension response test indicated that honey bees are able to discriminate between flower scents of the desert and Mediterranean populations. Considering the advantage of plants of the yellow morph in attracting pollinators, we further tested in a common garden experiment whether these possess higher fitness than plants of the desert population. Indeed, a significant association was found between flower color and fruit set, and seed mass. In general, our results provide evidence for ecotypic differentiation between populations imposed by pollinators. The advantage of the yellow color morph in attracting pollinators may explain its dominance among plants of the Mediterranean population. We discuss why the cream color morph may be dominant in the desert habitat, considering the possibility of different pollinators, tradeoffs between traits, or pleiotropy.


Asunto(s)
Conducta Apetitiva/fisiología , Abejas/fisiología , Brassicaceae/anatomía & histología , Flores/anatomía & histología , Polinización , Animales , Brassicaceae/química , Conducta de Elección , Color , Ecosistema , Flores/química , Odorantes , Fenotipo
7.
Elife ; 112022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939046

RESUMEN

The transformation of normal to malignant cells is accompanied by substantial changes in gene expression programs through diverse mechanisms. Here, we examined the changes in the landscape of transcription start sites and alternative promoter (AP) usage and their impact on the translatome in TCL1-driven chronic lymphocytic leukemia (CLL). Our findings revealed a marked elevation of APs in CLL B cells from Eµ-Tcl1 transgenic mice, which are particularly enriched with intra-genic promoters that generate N-terminally truncated or modified proteins. Intra-genic promoter activation is mediated by (1) loss of function of 'closed chromatin' epigenetic regulators due to the generation of inactive N-terminally modified isoforms or reduced expression; (2) upregulation of transcription factors, including c-Myc, targeting the intra-genic promoters and their associated enhancers. Exogenous expression of Tcl1 in MEFs is sufficient to induce intra-genic promoters of epigenetic regulators and promote c-Myc expression. We further found a dramatic translation downregulation of transcripts bearing CNY cap-proximal trinucleotides, reminiscent of cells undergoing metabolic stress. These findings uncovered the role of Tcl1 oncogenic function in altering promoter usage and mRNA translation in leukemogenesis.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Animales , Carcinogénesis/genética , Epigénesis Genética , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Transgénicos , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
8.
Ecol Evol ; 6(1): 363-74, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26811800

RESUMEN

Populations of Eruca sativa (Brassicaceae) from desert and Mediterranean (Med) habitats in Israel differ in their defense against larvae of the generalist Spodoptera littoralis but not the specialist Pieris brassicae. Larvae of the generalist insect feeding on plants of the Med population gained significantly less weight than those feeding on the desert plants, and exogenous application of methyl jasmonate (MJ) on leaves of the Med plants significantly reduced the level of damage created by the generalist larvae. However, MJ treatment significantly induced resistance in plants of the desert population, whereas the generalist larvae caused similar damage to MJ-induced and noninduced plants. Analyses of glucosinolates and expression of genes in their synthesis pathway indicated that defense in plants of the Med population against the generalist insect is governed by the accumulation of glucosinolates. In plants of the desert population, trypsin proteinase inhibitor activity was highly induced in response to herbivory by S. littoralis. Analysis of genes in the defense-regulating signaling pathways suggested that in response to herbivory, differences between populations in the induced levels of jasmonic acid, ethylene, and salicylic acid mediate the differential defenses against the insect. In addition, expression analysis of myrosinase-associated protein NSP2 suggested that in plants of the desert population, glucosinolates breakdown products were primarily directed to nitrile production. We suggest that proteinase inhibitors provide an effective defense in the desert plants, in which glucosinolate production is directed to the less toxic nitriles. The ecological role of nitrile production in preventing infestation by specialists is discussed.

9.
J Affect Disord ; 126(1-2): 214-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20427092

RESUMEN

BACKGROUND: The Dominant-Submissive Relationship (DSR) model used here was developed for mood stabilizing and antidepressant drug testing. Treatment of submissive animals with known antidepressants significantly reduced submissive behavior in a dose-dependent manner. We hypothesized that if submissive behavior in DSR is a valid model of depression, it should be possible to show a genetic predisposition for this trait, since clinical studies support a genetic component for depression. METHODS: To test this hypothesis, we applied selective breeding on outbred Sabra mice based on DSR paradigm. RESULTS: Here we have demonstrated that the frequency of DSR formation gradually increased across four generations of outbred Sabra mice, when animals inbred for the dominant trait were paired with those inbred for the submissive trait. Chronic imipramine administration (10mg/kg) significantly reduced submissive behavior in the F2 generation consistent with the effect seen in unselected C57BL/6J mice. CONCLUSIONS: We conclude that increased frequency of DSR formation suggest a genetic component of these two phenotypes, and strengthens the predictive and face validity of the DSR test. Selective breeding may aid in a better understanding of the genetic basis of dominant and submissive behavior, important elements in the etiology of affective disorders.


Asunto(s)
Cruzamiento , Dominación-Subordinación , Ratones/psicología , Animales , Antidepresivos Tricíclicos/farmacología , Conducta Animal/efectos de los fármacos , Trastorno Depresivo/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Imipramina/farmacología , Masculino , Aprendizaje por Laberinto , Ratones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA