Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834924

RESUMEN

Impaired calcium uptake resulting from reduced expression and activity of the cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure (HF). Recently, new mechanisms of SERCA2a regulation, including post-translational modifications (PTMs), have emerged. Our latest analysis of SERCA2a PTMs has identified lysine acetylation as another PTM which might play a significant role in regulating SERCA2a activity. SERCA2a is acetylated, and that acetylation is more prominent in failing human hearts. In this study, we confirmed that p300 interacts with and acetylates SERCA2a in cardiac tissues. Several lysine residues in SERCA2a modulated by p300 were identified using in vitro acetylation assay. Analysis of in vitro acetylated SERCA2a revealed several lysine residues in SERCA2a susceptible to acetylation by p300. Among them, SERCA2a Lys514 (K514) was confirmed to be essential for SERCA2a activity and stability using an acetylated mimicking mutant. Finally, the reintroduction of an acetyl-mimicking mutant of SERCA2a (K514Q) into SERCA2 knockout cardiomyocytes resulted in deteriorated cardiomyocyte function. Taken together, our data demonstrated that p300-mediated acetylation of SERCA2a is a critical PTM that decreases the pump's function and contributes to cardiac impairment in HF. SERCA2a acetylation can be targeted for therapeutic aims for the treatment of HF.


Asunto(s)
Insuficiencia Cardíaca , Procesamiento Proteico-Postraduccional , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Factores de Transcripción p300-CBP , Humanos , Insuficiencia Cardíaca/metabolismo , Lisina/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
2.
Circulation ; 141(15): 1249-1265, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32078387

RESUMEN

BACKGROUND: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS: We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS: Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and ß-catenin. CONCLUSIONS: We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Hormonas Tiroideas/metabolismo , Animales , Humanos , Ratones , Transfección , Proteínas de Unión a Hormona Tiroide
3.
Circ Res ; 124(9): e63-e80, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30786847

RESUMEN

RATIONALE: SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE: In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS: The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS: These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sirtuina 1/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteína p300 Asociada a E1A/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/patología , Procesamiento Proteico-Postraduccional , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Sirtuina 1/genética , Porcinos
4.
J Cell Mol Med ; 24(13): 7214-7227, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32485073

RESUMEN

Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR-676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR-676 as a new reference control for the EV miR studies.


Asunto(s)
Vesículas Extracelulares/genética , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , MicroARNs/genética , Animales , Regulación hacia Abajo/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Proteómica , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
5.
Circ Res ; 123(6): 673-685, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30355233

RESUMEN

RATIONALE: Abnormal SUMOylation has emerged as a characteristic of heart failure (HF) pathology. Previously, we found reduced SUMO1 (small ubiquitin-like modifier 1) expression and SERCA2a (sarcoplasmic reticulum Ca2+-ATPase) SUMOylation in human and animal HF models. SUMO1 gene delivery or small molecule activation of SUMOylation restored SERCA2a SUMOylation and cardiac function in HF models. Despite the critical role of SUMO1 in HF, the regulatory mechanisms underlying SUMO1 expression are largely unknown. OBJECTIVE: To examine miR-146a-mediated SUMO1 regulation and its consequent effects on cardiac morphology and function. METHODS AND RESULTS: In this study, miR-146a was identified as a SUMO1-targeting microRNA in the heart. A strong correlation was observed between miR-146a and SUMO1 expression in failing mouse and human hearts. miR-146a was manipulated in cardiomyocytes through AAV9 (adeno-associated virus serotype 9)-mediated gene delivery, and cardiac morphology and function were analyzed by echocardiography and hemodynamics. Overexpression of miR-146a reduced SUMO1 expression, SERCA2a SUMOylation, and cardiac contractility in vitro and in vivo. The effects of miR-146a inhibition on HF pathophysiology were examined by transducing a tough decoy of miR-146a into mice subjected to transverse aortic constriction. miR-146a inhibition improved cardiac contractile function and normalized SUMO1 expression. The regulatory mechanisms of miR-146a upregulation were elucidated by examining the major miR-146a-producing cell types and transfer mechanisms. Notably, transdifferentiation of fibroblasts triggered miR-146a overexpression and secretion through extracellular vesicles, and the extracellular vesicle-associated miR-146a transfer was identified as the causative mechanism of miR-146a upregulation in failing cardiomyocytes. Finally, extracellular vesicles isolated from failing hearts were shown to contain high levels of miR-146a and exerted negative effects on the SUMO1/SERCA2a signaling axis and hence cardiomyocyte contractility. CONCLUSIONS: Taken together, our results show that miR-146a is a novel regulator of the SUMOylation machinery in the heart, which can be targeted for therapeutic intervention.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Proteína SUMO-1/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Comunicación Celular , Transdiferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibroblastos/metabolismo , Fibroblastos/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , MicroARNs/genética , Miocitos Cardíacos/patología , Proteína SUMO-1/genética , Transducción de Señal , Sumoilación
6.
J Mol Cell Cardiol ; 129: 58-68, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771307

RESUMEN

The reduced expression of cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure. We previously showed that miR-25 is a crucial transcriptional regulator of SERCA2a in the heart. However, the precise mechanism of cardiac miR-25 regulation is largely unknown. Literatures suggested that miR-25 is regulated by the transcriptional co-factor, sine oculis homeobox homolog 1 (Six1), which in turn is epigenetically regulated by polycomb repressive complex 2 (PRC 2) in cardiac progenitor cells. Therefore, we aimed to investigate whether Six1 and PRC2 are indeed involved in the regulation of the miR-25 level in the setting of heart failure. Six1 was up-regulated in the failing hearts of humans and mice. Overexpression of Six1 led to adverse cardiac remodeling, whereas knock-down of Six1 attenuated pressure overload-induced cardiac dysfunction. The adverse effects of Six1 were ameliorated by knock-down of miR-25. The epigenetic repression on the Six1 promoter by PRC2 was significantly reduced in failing hearts. Epigenetic repression of Six1 is relieved through a reduction of PRC2 activity in heart failure. Six1 up-regulates miR-25, which is followed by reduction of cardiac SERCA2a expression. Collectively, these data showed that the PRC2-Six1-miR-25 signaling axis is involved in heart failure. Our finding introduces new insight into potential treatments of heart failure.


Asunto(s)
Insuficiencia Cardíaca/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Transducción de Señal , Animales , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/fisiopatología , Proteínas de Homeodominio/genética , Humanos , Ratones Endogámicos C57BL , MicroARNs/genética , Presión , Regiones Promotoras Genéticas , Regulación hacia Arriba/genética , Remodelación Ventricular/genética
7.
Heart Fail Rev ; 24(4): 601-615, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30666533

RESUMEN

Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.


Asunto(s)
Cardiopatías/fisiopatología , Corazón/fisiología , Modelos Biológicos , Animales , Línea Celular , Modelos Animales de Enfermedad , Cardiopatías/etiología , Cardiopatías/patología , Humanos , Técnicas In Vitro/métodos , Miocitos Cardíacos/fisiología , Ingeniería de Tejidos/métodos
8.
Circulation ; 133(15): 1458-71; discussion 1471, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26936863

RESUMEN

BACKGROUND: Stromal interaction molecule 1 (STIM1) is a dynamic calcium signal transducer implicated in hypertrophic growth of cardiomyocytes. STIM1 is thought to act as an initiator of cardiac hypertrophic response at the level of the sarcolemma, but the pathways underpinning this effect have not been examined. METHODS AND RESULTS: To determine the mechanistic role of STIM1 in cardiac hypertrophy and during the transition to heart failure, we manipulated STIM1 expression in mice cardiomyocytes by using in vivo gene delivery of specific short hairpin RNAs. In 3 different models, we found that Stim1 silencing prevents the development of pressure overload-induced hypertrophy but also reverses preestablished cardiac hypertrophy. Reduction in STIM1 expression promoted a rapid transition to heart failure. We further showed that Stim1 silencing resulted in enhanced activity of the antihypertrophic and proapoptotic GSK-3ß molecule. Pharmacological inhibition of glycogen synthase kinase-3 was sufficient to reverse the cardiac phenotype observed after Stim1 silencing. At the level of ventricular myocytes, Stim1 silencing or inhibition abrogated the capacity for phosphorylation of Akt(S473), a hydrophobic motif of Akt that is directly phosphorylated by mTOR complex 2. We found that Stim1 silencing directly impaired mTOR complex 2 kinase activity, which was supported by a direct interaction between STIM1 and Rictor, a specific component of mTOR complex 2. CONCLUSIONS: These data support a model whereby STIM1 is critical to deactivate a key negative regulator of cardiac hypertrophy. In cardiomyocytes, STIM1 acts by tuning Akt kinase activity through activation of mTOR complex 2, which further results in repression of GSK-3ß activity.


Asunto(s)
Canales de Calcio/fisiología , Complejos Multiproteicos/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Secuencias de Aminoácidos , Animales , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio/fisiología , Cardiomegalia , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Insuficiencia Cardíaca , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteína Asociada al mTOR Insensible a la Rapamicina , Molécula de Interacción Estromal 1 , Serina-Treonina Quinasas TOR/metabolismo , Remodelación Ventricular/fisiología
9.
Nature ; 477(7366): 601-5, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900893

RESUMEN

The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Proteína SUMO-1/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sumoilación , Animales , Células HEK293 , Insuficiencia Cardíaca/fisiopatología , Humanos , Lisina/metabolismo , Ratones , Ratas , Ratas Sprague-Dawley , Proteína SUMO-1/genética , Sus scrofa
10.
J Mol Cell Cardiol ; 97: 278-85, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27266388

RESUMEN

Definitively identifying the cell type of newly generated cells in the heart and defining their origins are central questions in cardiac regenerative medicine. Currently, it is challenging to ascertain the myocardial identity and to track myocardial progeny during heart development and disease due to lack of proper genetic tools. This may lead to many misinterpretations of the findings in cardiac regenerative biology. In this study, we developed a set of novel mouse models by inserting double reporter genes nlacZ/H2B-GFP, mGFP/H2B-mCherry into the start codon of Tnnt2 and Myh6. nlacZ (nuclear lacZ) and mGFP (membrane GFP) are flanked by two LoxP sites in these animals. We found that the reporter genes faithfully recapitulated Tnnt2 and Myh6 cardiac expression from embryonic stage and adulthood. The reporter mice provide unprecedented robustness and fidelity for visualizing and tracing cardiomyocytes with nuclear or cell membrane localization signals. These animal models offer superior genetic tools to meet a critical need in studies of heart development, cardiac stem cell biology and cardiac regenerative medicine.


Asunto(s)
Marcadores Genéticos , Miocitos Cardíacos/metabolismo , Fenotipo , Animales , Linaje de la Célula/genética , Femenino , Técnica del Anticuerpo Fluorescente , Expresión Génica , Genes Reporteros , Masculino , Ratones , Ratones Transgénicos , Miocardio , Cadenas Pesadas de Miosina/genética , Especificidad de Órganos/genética , Proteínas Recombinantes de Fusión , Regeneración , Medicina Regenerativa , Troponina T/genética
11.
Circ Res ; 114(7): 1133-43, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24526703

RESUMEN

RATIONALE: Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear. OBJECTIVE: Recently, we suggested that casein kinase 2α1-dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy. Here we report an alternative post-translational activation mechanism of HDAC2 that involves acetylation of HDAC2 mediated by p300/CBP-associated factor/HDAC5. METHODS AND RESULTS: Hdac2 was acetylated in response to hypertrophic stresses in both cardiomyocytes and a mouse model. Acetylation was reduced by a histone acetyltransferase inhibitor but was increased by a nonspecific HDAC inhibitor. The enzymatic activity of Hdac2 was positively correlated with its acetylation status. p300/CBP-associated factor bound to Hdac2 and induced acetylation. The HDAC2 K75 residue was responsible for hypertrophic stress-induced acetylation. The acetylation-resistant Hdac2 K75R showed a significant decrease in phosphorylation on S394, which led to the loss of intrinsic activity. Hdac5, one of class IIa HDACs, directly deacetylated Hdac2. Acetylation of Hdac2 was increased in Hdac5-null mice. When an acetylation-mimicking mutant of Hdac2 was infected into cardiomyocytes, the antihypertrophic effect of either nuclear tethering of Hdac5 with leptomycin B or Hdac5 overexpression was reduced. CONCLUSIONS: Taken together, our results suggest a novel mechanism by which the balance of HDAC2 acetylation is regulated by p300/CBP-associated factor and HDAC5 in the development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Histona Desacetilasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Ratones , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Factores de Transcripción p300-CBP/genética
12.
Heart Lung Circ ; 25(4): 319-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26795636

RESUMEN

Heart failure is a complex disease process with various aetiologies and is a significant cause of morbidity and death world-wide. Post-translational modifications (PTMs) alter protein structure and provide functional diversity in terms of physiological functions of the heart. In addition, alterations in protein PTMs have been implicated in human disease pathogenesis. Small ubiquitin-like modifier mediated modification (SUMOylation) pathway was found to play essential roles in cardiac development and function. Abnormal SUMOylation has emerged as a new feature of heart failure pathology. In this review, we will highlight the importance of SUMOylation as a regulatory mechanism of SERCA2a function, and its therapeutic potential for the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Proteínas Musculares/metabolismo , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sumoilación , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Humanos , Miocardio/patología
13.
Mol Ther Nucleic Acids ; 35(2): 102174, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38584818

RESUMEN

Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.

14.
J Mol Cell Cardiol ; 56: 63-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23262438

RESUMEN

Cardiac sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) plays a crucial role in Ca(2+) handling in cardiomyocytes. Phospholamban (PLB) is an endogenous inhibitor of SERCA2a and its inhibitory activity is enhanced via dephosphorylation by protein phosphatase 1 (PP1). Therefore, the inhibition of PP1-mediated dephosphorylation of PLB might be an efficient strategy for the restoration of reduced SERCA2a activity in failing hearts. We sought to develop decoy peptides that would mimic phosphorylated PLB and thus competitively inhibit the PP1-mediated dephosphorylation of endogenous PLB. The phosphorylation sites Ser16 and Thr17 are located within the flexible loop region (amino acids 14-22) of PLB. We therefore synthesized a 9-mer peptide derived from this region (ΨPLB-wt) and two pseudo-phosphorylated peptides where Ser16 was replaced with Glu (ΨPLB-SE) or Thr17 was replaced with Glu (ΨPLB-TE). These peptides were coupled to the cell-permeable peptide TAT to facilitate cellular uptake. Treatment of adult rat cardiomyocytes with ΨPLB-SE or ΨPLB-TE, but not with ΨPLB-wt, significantly elevated the phosphorylation levels of PLB at Ser16 and Thr17. This increased phosphorylation of PLB correlated with an increase in contractile parameters in vitro. Furthermore, the perfusion of isolated rat hearts with ΨPLB-SE or ΨPLB-TE, but not with ΨPLB-wt, significantly improved left ventricular developed pressure that had been previously impaired by ischemia. These data indicate that ΨPLB-SE and ΨPLB-TE efficiently prevented dephosphorylation of PLB by serving as decoys for PP1. Therefore, these peptides may provide an effective modality to regulate SERCA2a activity in failing hearts.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Cardiotónicos/farmacología , Fragmentos de Péptidos/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Cardiotónicos/química , Células Cultivadas , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Técnicas In Vitro , Cinética , Masculino , Datos de Secuencia Molecular , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Fragmentos de Péptidos/química , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
15.
Basic Res Cardiol ; 108(3): 344, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23553082

RESUMEN

The histidine-rich Ca(2+)-binding protein (HRC) is located in the lumen of the sarcoplasmic reticulum (SR) and exhibits high-capacity Ca(2+)-binding properties. Overexpression of HRC in the heart resulted in impaired SR Ca(2+) uptake and depressed relaxation through its interaction with SERCA2a. However, the functional significance of HRC in overall regulation of calcium cycling and contractility is not currently well defined. To further elucidate the role of HRC in vivo under physiological and pathophysiological conditions, we generated and characterized HRC-knockout (KO) mice. The KO mice were morphologically and histologically normal compared to wild-type (WT) mice. At the cellular level, ablation of HRC resulted in significantly enhanced contractility, Ca(2+) transients, and maximal SR Ca(2+) uptake rates in the heart. However, after-contractions were developed in 50 % of HRC-KO cardiomyocytes, compared to 11 % in WT mice under stress conditions of high-frequency stimulation (5 Hz) and isoproterenol application. A parallel examination of the electrical activity revealed significant increases in the occurrence of Ca(2+) spontaneous SR Ca(2+) release and delayed afterdepolarizations with ISO in HRC-KO, compared to WT cells. The frequency of Ca(2+) sparks was also significantly higher in HRC-KO cells with ISO, consistent with the elevated SR Ca(2+) load in the KO cells. Furthermore, HRC-KO cardiomyocytes showed significantly deteriorated cell contractility and Ca(2+)-cycling caused possibly by depressed SERCA2a expression after transverse-aortic constriction (TAC). Also HRC-null mice exhibited severe cardiac hypertrophy, fibrosis, pulmonary edema and decreased survival after TAC. Our results indicate that ablation of HRC is associated with poorly regulated SR Ca(2+)-cycling, and severe pathology under pressure-overload stress, suggesting an essential role of HRC in maintaining the integrity of cardiac function.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/deficiencia , Cardiomegalia/metabolismo , Hemodinámica , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Estimulación Cardíaca Artificial , Cardiomegalia/etiología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Genotipo , Isoproterenol , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Miocitos Cardíacos/patología , Fenotipo , Edema Pulmonar/etiología , Edema Pulmonar/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Índice de Severidad de la Enfermedad
16.
J Mol Cell Cardiol ; 53(1): 53-63, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22449794

RESUMEN

Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT) has distinct anti-hypertrophic and inotropic functions. We have previously shown that PICOT exerts its anti-hypertrophic effect by inhibiting calcineurin-NFAT signaling through its C-terminal glutaredoxin domain. However, the mechanism underlying the inotropic effect of PICOT is unknown. The results of protein pull-down experiments showed that PICOT directly binds to the catalytic domain of PKCζ through its N-terminal thioredoxin-like domain. Purified PICOT protein inhibited the kinase activity of PKCζ in vitro, which indicated that PICOT is an endogenous inhibitor of PKCζ. The inhibition of PKCζ activity with a PKCζ-specific pseudosubstrate peptide inhibitor was sufficient to increase the cardiac contractility in vitro and ex vivo. Overexpression of PICOT or inhibition of PKCζ activity down-regulated PKCα activity, which led to the elevation of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a activity, concomitant with the increased phosphorylation of phospholamban (PLB). Overexpression of PICOT or inhibition of PKCζ activity also down-regulated protein phosphatase (PP) 2A activity, which subsequently resulted in the increased phosphorylation of troponin (Tn) I and T, key myofilament proteins associated with the regulation of contractility. PICOT appeared to inhibit PP2A activity through the disruption of the functional PKCζ/PP2A complex. In contrast to the overexpression of PICOT or inhibition of PKCζ, reduced PICOT expression resulted in up-regulation of PKCα and PP2A activities, followed by decreased phosphorylation of PLB, and TnI and T, respectively, supporting the physiological relevance of these events. Transgene- or adeno-associated virus (AAV)-mediated overexpression of PICOT restored the impaired contractility and prevented further morphological and functional deterioration of the failing hearts. Taken together, the results of the present study suggest that PICOT exerts its inotropic effect by negatively regulating PKCα and PP2A activities through the inhibition of PKCζ activity. This finding provides a novel insight into the regulation of cardiac contractility.


Asunto(s)
Proteínas Portadoras/metabolismo , Contracción Miocárdica/fisiología , Proteína Quinasa C/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/genética , Línea Celular , Activación Enzimática , Humanos , Masculino , Ratones , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Fragmentos de Péptidos/farmacología , Unión Proteica , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Troponina I/metabolismo , Troponina T/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacología
17.
Front Cardiovasc Med ; 9: 763544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557546

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration due to dystrophin gene mutations. Patients with DMD initially experience muscle weakness in their limbs during adolescence. With age, patients develop fatal respiratory and cardiac dysfunctions. During the later stages of the disease, severe cardiac fibrosis occurs, compromising cardiac function. Previously, our research showed that the matricellular protein CCN5 has antifibrotic properties. Therefore, we hypothesized that CCN5 gene transfer would ameliorate cardiac fibrosis and thus improve cardiac function in DMD-induced cardiomyopathy. We utilized mdx/utrn (±) haploinsufficient mice that recapitulated the DMD-disease phenotypes and used an adeno-associated virus serotype-9 viral vector for CCN5 gene transfer. We evaluated the onset of cardiac dysfunction using echocardiography and determined the experimental starting point in 13-month-old mice. Two months after CCN5 gene transfer, cardiac function was significantly enhanced, and cardiac fibrosis was ameliorated. Additionally, running performance was improved in CCN5 gene-transfected mice. Furthermore, in silico gene profiling analysis identified utrophin as a novel transcriptional target of CCN5. This was supplemented by a utrophin promoter assay and RNA-seq analysis, which confirmed that CCN5 was directly associated with utrophin expression. Our results showed that CCN5 may be a promising therapeutic molecule for DMD-induced cardiac and skeletal dysfunction.

18.
Cardiovasc Res ; 118(15): 3140-3150, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191471

RESUMEN

AIMS: A mutation in the phospholamban (PLN) gene, leading to deletion of Arg14 (R14del), has been associated with malignant arrhythmias and ventricular dilation. Identifying pre-symptomatic carriers with vulnerable myocardium is crucial because arrhythmia can result in sudden cardiac death, especially in young adults with PLN-R14del mutation. This study aimed at assessing the efficiency and efficacy of in vivo genome editing, using CRISPR/Cas9 and a cardiotropic adeno-associated virus-9 (AAV9), in improving cardiac function in young adult mice expressing the human PLN-R14del. METHODS AND RESULTS: Humanized mice were generated expressing human wild-type (hPLN-WT) or mutant (hPLN-R14del) PLN in the heterozygous state, mimicking human carriers. Cardiac magnetic resonance imaging at 12 weeks of age showed bi-ventricular dilation and increased stroke volume in mutant vs. WT mice, with no deficit in ejection fraction or cardiac output. Challenge of ex vivo hearts with isoproterenol and rapid pacing unmasked higher propensity for sustained ventricular tachycardia (VT) in hPLN-R14del relative to hPLN-WT. Specifically, the VT threshold was significantly reduced (20.3 ± 1.2 Hz in hPLN-R14del vs. 25.7 ± 1.3 Hz in WT, P < 0.01) reflecting higher arrhythmia burden. To inactivate the R14del allele, mice were tail-vein-injected with AAV9.CRISPR/Cas9/gRNA or AAV9 empty capsid (controls). CRISPR-Cas9 efficiency was evaluated by droplet digital polymerase chain reaction and NGS-based amplicon sequencing. In vivo gene editing significantly reduced end-diastolic and stroke volumes in hPLN-R14del CRISPR-treated mice compared to controls. Susceptibility to VT was also reduced, as the VT threshold was significantly increased relative to controls (30.9 ± 2.3 Hz vs. 21.3 ± 1.5 Hz; P < 0.01). CONCLUSIONS: This study is the first to show that disruption of hPLN-R14del allele by AAV9-CRISPR/Cas9 improves cardiac function and reduces VT susceptibility in humanized PLN-R14del mice, offering preclinical evidence for translatable approaches to therapeutically suppress the arrhythmogenic phenotype in human patients with PLN-R14del disease.


Asunto(s)
Cardiomiopatías , Edición Génica , Humanos , Ratones , Animales , Cardiomiopatías/genética , Cardiomiopatías/terapia
19.
Circ Res ; 102(6): 711-9, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18258855

RESUMEN

PICOT (protein kinase C-interacting cousin of thioredoxin) was previously shown to inhibit pressure overload-induced cardiac hypertrophy, concomitant with an increase in ventricular function and cardiomyocyte contractility. The combined analyses of glutathione S-transferase pull-down experiments and mass spectrometry enabled us to determine that PICOT directly interacts with muscle LIM protein (MLP) via its carboxyl-terminal half (PICOT-C). It was also shown that PICOT colocalizes with MLP in the Z-disc. MLP is known to play a role in anchoring calcineurin to the Z-disc in the sarcomere, which is critical for calcineurin-NFAT (nuclear factor of activated T cells) signaling. We, therefore, suggested that PICOT may affect calcineurin-NFAT signaling through its interaction with MLP. Consistent with this hypothesis, PICOT, or more specifically PICOT-C, abrogated phenylephrine-induced increases in calcineurin phosphatase activity, NFAT dephosphorylation/nuclear translocation, and NFAT-dependent transcriptional activation in neonatal cardiomyocytes. In addition, pressure overload-induced upregulation of NFAT target genes was significantly diminished in the hearts of PICOT-overexpressing transgenic mice. PICOT interfered with MLP-calcineurin interactions in a dose-dependent manner. Moreover, calcineurin was displaced from the Z-disc, concomitant with an abrogated interaction between calcineurin and MLP, in the hearts of PICOT transgenic mice. Replenishment of MLP restored the hypertrophic responses and the increase in calcineurin phosphatase activity that was inhibited by PICOT in phenylephrine-treated cardiomyocytes. Finally, PICOT-C inhibited cardiac hypertrophy to an extent that was comparable to that of full-length PICOT. Taken together, these data suggest that PICOT inhibits cardiac hypertrophy largely by negatively regulating calcineurin-NFAT signaling via disruption of the MLP-calcineurin interaction.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/prevención & control , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Transducción de Señal , Tiorredoxinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Animales Recién Nacidos , Unión Competitiva , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotónicos/farmacología , Tamaño de la Célula , Células Cultivadas , Proteínas con Dominio LIM , Mecanotransducción Celular , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Células 3T3 NIH , Proteínas del Tejido Nervioso/metabolismo , Fenilefrina/farmacología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Tiorredoxinas/química , Tiorredoxinas/genética , Transducción Genética
20.
J Vis Exp ; (155)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-32009647

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a valuable human source for studying the basic science of calcium (Ca2+) handling and signaling pathways as well as high-throughput drug screening and toxicity assays. Herein, we provide a detailed description of the methodologies used to generate high-quality iPSC-CMs that can consistently reproduce molecular and functional characteristics across different cell lines. Additionally, a method is described to reliably assess their functional characterization through the evaluation of Ca2+ handling properties. Low oxygen (O2) conditions, lactate selection, and prolonged time in culture produce high-purity and high-quality ventricular-like cardiomyocytes. Similar to isolated adult rat cardiomyocytes (ARCMs), 3-month-old iPSC-CMs exhibit higher Ca2+ amplitude, faster rate of Ca2+ reuptake (decay-tau), and a positive lusitropic response to ß-adrenergic stimulation compared to day 30 iPSC-CMs. The strategy is technically simple, cost-effective, and reproducible. It provides a robust platform to model cardiac disease and for the large-scale drug screening to target Ca2+ handling proteins.


Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/citología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA