Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Transl Med ; 21(1): 263, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069607

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS: We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS: The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION: In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Avena , Simulación del Acoplamiento Molecular , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular
2.
Curr Issues Mol Biol ; 44(5): 1788-1809, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35678652

RESUMEN

Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway of COVID-19 is therefore obviously important. The compounds of LE were identified from the Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The targets interacted with the compounds and were selected using the Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to COVID-19. The protein-protein interaction (PPI) networks and signaling pathways-targets-bioactive compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular docking test (MDT) to verify the binding affinity between significant complexes through AutoDock 1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol were related to each target and had the most stable binding affinity. The three bioactive effects on the three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall, this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three components (bioactive compounds, targets, and mechanism) are the most significant elements of LE against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the basis of mining data; the efficacy of the chemical compounds and the affinity between compounds and the targets in experiment was ignored, which should be further substantiated through clinical trials.

3.
Curr Issues Mol Biol ; 44(5): 2257-2274, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35678682

RESUMEN

In the present study, a subject of atopic dermatitis (AD) is exposed progressively to allergic rhinitis (AR) and asthma (AS), which is defined as atopic march (AM). However, both the targets and compounds against AM are still largely unknown. Hence, we investigated the overlapping targets related directly to the occurrence and development of AD, AR, and AS through public databases (DisGeNET, and OMIM). The final overlapping targets were considered as key targets of AM, which were visualized by a Venn diagram. The protein-protein interaction (PPI) network was constructed using R package software. We retrieved the association between targets and ligands via scientific journals, and the ligands were filtered by physicochemical properties. Lastly, we performed a molecular docking test (MDT) to identify the significant ligand on each target. A total of 229 overlapping targets were considered as AM causal elements, and 210 out of them were interconnected with each other. We adopted 65 targets representing the top 30% highest in degree centrality among 210 targets. Then, we obtained 20 targets representing the top 30% greatest in betweenness centrality among 65 targets. The network analysis unveiled key targets against AM, and the MDT confirmed the affinity between significant compounds and targets. In this study, we described the significance of the eight uppermost targets (CCL2, CTLA4, CXCL8, ICAM1, IL10, IL17A, IL1B, and IL2) and eight ligands (Bindarit, CTLA-4 inhibitor, Danirixin, A-205804, AX-24 HCl, Y-320, T-5224, and Apilimod) against AM, providing a scientific basis for further experiments.

4.
Curr Issues Mol Biol ; 44(3): 1046-1061, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35723292

RESUMEN

At present, most rheumatoid arthritis (RA) patients are at risk of osteoporosis (OP), which is increased by 1.5 times compared to non-RA individuals. Hence, we investigated overlapping targets related directly to the occurrence and development of RA and OP through public databases (DisGeNET, and OMIM) and literature. A total of 678 overlapping targets were considered as comorbid factors, and 604 out of 678 were correlated with one another. Interleukin 6 (IL-6), with the highest degree of value in terms of protein−protein interaction (PPI), was considered to be a core target against comorbidity. We identified 31 existing small molecules (< 1000 g/mol) as IL-6 inhibitors, and 19 ligands were selected by the 3 primary criteria (Lipinski's rule, TPSA, and binding energy). We postulated that MD2-TLR4-IN-1 (PubChem ID: 138454798), as confirmed by the three criteria, was the key ligand to alleviate comorbidity between RA and OP. In conclusion, we described a promising active ligand (MD2-TLR4-IN-1), and a potential target (IL-6) against comorbidity of RA and OP, providing scientific evidence for a further clinical trial.

5.
Curr Issues Mol Biol ; 44(4): 1597-1609, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723367

RESUMEN

Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein-protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand-receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with -7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand-receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.

6.
Curr Issues Mol Biol ; 44(7): 3253-3266, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877448

RESUMEN

Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.

7.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35216171

RESUMEN

Short cationic peptides (SCPs) with therapeutic efficacy of antimicrobial peptides (AMPs), antifungal peptides (AFPs), and anticancer peptides (ACPs) are known as an enhancement of the host defense system. Here, we investigated the uppermost peptide(s), hub signaling pathway(s), and their associated target(s) through network pharmacology. Firstly, we selected SCPs with positive amino acid residues on N- and C- terminals under 500 Dalton via RStudio. Secondly, the overlapping targets between the bacteria-responsive targets (TTD and OMIM) and AMPs' targets were visualized by VENNY 2.1. Thirdly, the overlapping targets between AFPs' targets and fungal-responsive targets were exhibited by VENNY 2.1. Fourthly, the overlapping targets between cancer-related targets (TTD and OMIM) and fungal-responsive targets were displayed by VENNY 2.1. Finally, a molecular docking study (MDS) was carried out to discover the most potent peptides on a hub signaling pathway. A total of 1833 SCPs were identified, and AMPs', AFPs', and ACPs' filtration suggested that 197 peptides (30 targets), 81 peptides (6 targets), and 59 peptides (4 targets) were connected, respectively. The AMPs-AFPs-ACPs' axis indicated that 27 peptides (2 targets) were associated. Each hub signaling pathway for the enhancement of the host defense system was "Inactivation of Rap1 signaling pathway on AMPs", "Activation of Notch signaling pathway on AMPs-AFPs' axis", and "Inactivation of HIF-1 signaling pathway on AMPs-AFPs-ACPs' axis". The most potent peptides were assessed via MDS; finally, HPIK on STAT3 and HVTK on NOS2 and on HIF-1 signaling pathway were the most stable complexes. Furthermore, the two peptides had better affinity scores than standard inhibitors (Stattic, 1400 W). Overall, the most potent SCPs for the human defense system were HPIK on STAT3 and HVTK on NOS2, which might inactivate the HIF-1 signaling pathway.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Farmacología en Red , Transducción de Señal , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteoma/química , Proteoma/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012266

RESUMEN

Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut-hepatic-brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy.


Asunto(s)
Microbioma Gastrointestinal , Encefalopatía Hepática , Probióticos , Disbiosis/complicaciones , Disbiosis/terapia , Trasplante de Microbiota Fecal/efectos adversos , Fibrosis , Encefalopatía Hepática/etiología , Encefalopatía Hepática/terapia , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/terapia , Probióticos/uso terapéutico
9.
Curr Issues Mol Biol ; 43(3): 1906-1936, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34889899

RESUMEN

Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (ß-Amyrone, ß-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and ß-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Zea mays/química , Fenómenos Químicos , Descubrimiento de Drogas , Cromatografía de Gases y Espectrometría de Masas , Humanos , Medicina Tradicional , Modelos Moleculares , Estructura Molecular , Obesidad/tratamiento farmacológico , Relación Estructura-Actividad
10.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502281

RESUMEN

M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski's rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins-AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway.


Asunto(s)
Supresores de la Gota/farmacología , Morus/química , Hojas de la Planta/química , Proteínas ras/metabolismo , Animales , Evaluación Preclínica de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Gota/tratamiento farmacológico , Gota/metabolismo , Supresores de la Gota/química , Supresores de la Gota/toxicidad , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas , Transducción de Señal/efectos de los fármacos , gamma-Tocoferol/análisis , gamma-Tocoferol/farmacología
11.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641448

RESUMEN

Cirsium japonicum var. maackii (Maxim.) Matsum. or Korean thistle flower is a herbal plant used to treat tumors in Korean folk remedies, but its essential bioactives and pharmacological mechanisms against cancer have remained unexplored. This study identified the main compounds(s) and mechanism(s) of the C. maackii flower against cancer via network pharmacology. The bioactives from the C. maackii flower were revealed by gas chromatography-mass spectrum (GC-MS), and SwissADME evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactives were visualized, constructed, and analyzed by RPackage. Finally, we implemented a molecular docking test (MDT) to explore key target(s) and compound(s) on AutoDockVina and LigPlot+. GC-MS detected a total of 34 bioactives and all were accepted by Lipinski's rules and therefore classified as drug-like compounds (DLCs). A total of 597 bioactive-related targets and 4245 cancer-related targets were identified from public databases. The final 51 overlapping targets were selected between the bioactive targets network and cancer-related targets. With Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signaling pathways were manifested, and a hub signaling pathway (PI3K-Akt signaling pathway), a key target (Akt1), and a key compound (Urs-12-en-24-oic acid, 3-oxo, methyl ester) were selected among the 20 signaling pathways via MDT. Overall, Urs-12-en-24-oic acid, 3-oxo, methyl ester from the C. maackii flower has potent anti-cancer efficacy by inactivating Akt1 on the PI3K-Akt signaling pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Cirsium/química , Flores/química , Redes Reguladoras de Genes/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Humanos , República de Corea , Transducción de Señal
15.
Artif Cells Nanomed Biotechnol ; 52(1): 278-290, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733373

RESUMEN

Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Saururaceae , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/microbiología , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipertensión/microbiología , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Animales , Saururaceae/química , Saururaceae/metabolismo , Simulación del Acoplamiento Molecular , Humanos , Mapas de Interacción de Proteínas
16.
Sci Rep ; 14(1): 16122, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997279

RESUMEN

Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.


Asunto(s)
Microbioma Gastrointestinal , Aprendizaje Automático , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Algoritmos , Hepatopatías Alcohólicas/microbiología , Hepatopatías Alcohólicas/diagnóstico , Hepatopatías Alcohólicas/metabolismo , ARN Ribosómico 16S/genética , Anciano , Curva ROC , Heces/microbiología , Hígado Graso/microbiología , Hígado Graso/diagnóstico , Hígado Graso/metabolismo
17.
Hepatol Int ; 18(2): 486-499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37000389

RESUMEN

BACKGROUND AND AIM: The prevalence and severity of alcoholic liver disease (ALD) are increasing. The incidence of alcohol-related cirrhosis has risen up to 2.5%. This study aimed to identify novel metabolite mechanisms involved in the development of ALD in patients. The use of gut microbiome-derived metabolites is increasing in targeted therapies. Identifying metabolic compounds is challenging due to the complex patterns that have long-term effects on ALD. We investigated the specific metabolite signatures in ALD patients. METHODS: This study included 247 patients (heathy control, HC: n = 62, alcoholic fatty liver, AFL; n = 25, alcoholic hepatitis, AH; n = 80, and alcoholic cirrhosis, AC, n = 80) identified, and stool samples were collected. 16S rRNA sequencing and metabolomics were performed with MiSeq sequencer and liquid chromatography coupled to time-of-flight-mass spectrometry (LC-TOF-MS), respectively. The untargeted metabolites in AFL, AH, and AC samples were evaluated by multivariate statistical analysis and metabolic pathotypic expression. Metabolic network classifiers were used to predict the pathway expression of the AFL, AH, and AC stages. RESULTS: The relative abundance of Proteobacteria was increased and the abundance of Bacteroides was decreased in ALD samples (p = 0.001) compared with that in HC samples. Fusobacteria levels were higher in AH samples (p = 0.0001) than in HC samples. Untargeted metabolomics was applied to quantitatively screen 103 metabolites from each stool sample. Indole-3-propionic acid levels are significantly lower in AH and AC (vs. HC, p = 0.001). Indole-3-lactic acid (ILA: p = 0.04) levels were increased in AC samples. AC group showed an increase in indole-3-lactic acid (vs. HC, p = 0.040) level. Compared with that in HC samples, the levels of short-chain fatty acids (SCFAs: acetic acid, butyric acid, propionic acid, iso-butyric acid, and iso-valeric acid) and bile acids (lithocholic acids) were significantly decreased in AC. The pathways of linoleic acid metabolism, indole compounds, histidine metabolism, fatty acid degradation, and glutamate metabolism were closely associated with ALD metabolism. CONCLUSIONS: This study identified that microbial metabolic dysbiosis is associated with ALD-related metabolic dysfunction. The SCFAs, bile acids, and indole compounds were depleted during ALD progression. CLINICAL TRIAL: Clinicaltrials.gov, number NCT04339725.


Asunto(s)
Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Humanos , Propionatos , ARN Ribosómico 16S/genética , Cirrosis Hepática Alcohólica , Indoles , Ácidos y Sales Biliares
18.
Clin Transl Sci ; 17(3): e13778, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515346

RESUMEN

Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.


Asunto(s)
Frutas , Persea , Humanos , Simulación del Acoplamiento Molecular , Bioensayo , Ácidos Grasos , Obesidad/tratamiento farmacológico
19.
Clin Mol Hepatol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39048520

RESUMEN

Background/Aims: Shifts in the gut microbiota and metabolites are interrelated with liver cirrhosis progression and complications. However, causal relationships have not been evaluated comprehensively. Here, we identified complication-dependent gut microbiota and metabolic signatures in patients with liver cirrhosis. Methods: Microbiome taxonomic profiling was performed on 194 stool samples (52 controls and 142 cirrhosis patients) via V3-V4 16S rRNA sequencing. Next, 51 samples (17 controls and 34 cirrhosis patients) were selected for fecal metabolite profiling via gas chromatography mass spectrometry and liquid chromatography coupled to time-of-flight-mass spectrometry. Correlation analyses were performed targeting the gut- microbiota, metabolites, clinical parameters, and presence of complications (varices, ascites, peritonitis, encephalopathy, hepatorenal syndrome, hepatocellular carcinoma, and deceased). Results: Veillonella bacteria, Ruminococcus gnavus, and Streptococcus pneumoniae are cirrhosis-related microbiotas compared with control group. Bacteroides ovatus, Clostridium symbiosum, Emergencia timonensis, Fusobacterium varium, and Hungatella_uc were associated with complications in the cirrhosis group. The areas under the receiver operating characteristic curve (AUROCs) for the diagnosis of cirrhosis, encephalopathy, hepatorenal syndrome, and deceased were 0.863, 0.733, 0.71, and 0.69, respectively. The AUROCs of mixed microbial species for the diagnosis of cirrhosis and complication were 0.808 and 0.847, respectively. According to the metabolic profile, 5 increased fecal metabolites in patients with cirrhosis were biomarkers (AUROC > 0.880) for the diagnosis of cirrhosis and complications. Clinical markers were significantly correlated with the gut microbiota and metabolites. Conclusion: Cirrhosis-dependent gut microbiota and metabolites present unique signatures that can be used as noninvasive biomarkers for the diagnosis of cirrhosis and its complications.

20.
Artif Cells Nanomed Biotechnol ; 52(1): 250-260, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38687561

RESUMEN

Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Hordeum , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hordeum/microbiología , Hordeum/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos , Ratones , Mapas de Interacción de Proteínas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA