Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(52): E12417-E12426, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530687

RESUMEN

Injured peripheral sensory neurons switch to a regenerative state after axon injury, which requires transcriptional and epigenetic changes. However, the roles and mechanisms of gene inactivation after injury are poorly understood. Here, we show that DNA methylation, which generally leads to gene silencing, is required for robust axon regeneration after peripheral nerve lesion. Ubiquitin-like containing PHD ring finger 1 (UHRF1), a critical epigenetic regulator involved in DNA methylation, increases upon axon injury and is required for robust axon regeneration. The increased level of UHRF1 results from a decrease in miR-9. The level of another target of miR-9, the transcriptional regulator RE1 silencing transcription factor (REST), transiently increases after injury and is required for axon regeneration. Mechanistically, UHRF1 interacts with DNA methyltransferases (DNMTs) and H3K9me3 at the promoter region to repress the expression of the tumor suppressor gene phosphatase and tensin homolog (PTEN) and REST. Our study reveals an epigenetic mechanism that silences tumor suppressor genes and restricts REST expression in time after injury to promote axon regeneration.


Asunto(s)
Regeneración Nerviosa/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Animales , Axones/metabolismo , Axones/fisiología , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Regulación de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen/fisiología , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa/fisiología , Regiones Promotoras Genéticas/genética , Proteínas Represoras/metabolismo , Nervio Ciático/lesiones , Ubiquitina-Proteína Ligasas
2.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389838

RESUMEN

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción/fisiología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Transmisión Sináptica/fisiología
3.
Proc Natl Acad Sci U S A ; 112(4): 949-56, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25561520

RESUMEN

Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil , Mutación Missense , Convulsiones , Potenciales de Acción/genética , Sustitución de Aminoácidos , Animales , Niño , Preescolar , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología
4.
EMBO J ; 31(23): 4441-52, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23092970

RESUMEN

Heterogeneous ribonucleoprotein-K (hnRNP-K) is normally ubiquitinated by HDM2 for proteasome-mediated degradation. Under DNA-damage conditions, hnRNP-K is transiently stabilized and serves as a transcriptional co-activator of p53 for cell-cycle arrest. However, how the stability and function of hnRNP-K is regulated remained unknown. Here, we demonstrated that UV-induced SUMOylation of hnRNP-K prevents its ubiquitination for stabilization. Using SUMOylation-defective mutant and purified SUMOylated hnRNP-K, SUMOylation was shown to reduce hnRNP-K's affinity to HDM2 with an increase in that to p53 for p21-mediated cell-cycle arrest. PIAS3 served as a small ubiquitin-related modifier (SUMO) E3 ligase for hnRNP-K in an ATR-dependent manner. During later periods after UV exposure, however, SENP2 removed SUMO from hnRNP-K for its destabilization and in turn for release from cell-cycle arrest. Consistent with the rise-and-fall of both SUMOylation and stability of hnRNP-K, its ability to interact with PIAS3 was inversely correlated to that with SENP2 during the time course after UV exposure. These findings indicate that SUMO modification plays a crucial role in the control of hnRNP-K's function as a p53 co-activator in response to DNA damage by UV.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Mutación , Proteínas Inhibidoras de STAT Activados/metabolismo , Sumoilación , Ubiquitina/química , Rayos Ultravioleta
5.
Mol Cells ; 47(4): 100046, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492889

RESUMEN

MicroRNAs play a crucial role in directly reprogramming (converting) human fibroblasts into neurons. Specifically, miR-9/9* and miR-124 (miR-9/9*-124) display neurogenic and cell fate-switching activities when ectopically expressed in human fibroblasts by erasing fibroblast identity and inducing a pan-neuronal state. These converted neurons maintain the biological age of the starting fibroblasts and thus provide a human neuron-based platform to study cellular properties in aged neurons and model adult-onset neurodegenerative disorders using patient-derived cells. Furthermore, the expression of striatal-enriched transcription factors in conjunction with miR-9/9*-124 guides the identity of medium spiny neurons (MSNs), the primary targets in Huntington's disease (HD). Converted MSNs from HD patient-derived fibroblasts (HD-MSNs) can replicate HD-related phenotypes including neurodegeneration associated with age-related declines in critical cellular functions such as autophagy. Here, we review the role of microRNAs in the direct conversion of patient-derived fibroblasts into MSNs and the practical application of converted HD-MSNs as a model for studying adult-onset neuropathology in HD. We provide valuable insights into age-related, cell-intrinsic changes contributing to neurodegeneration in HD-MSNs. Ultimately, we address a comprehensive understanding of the complex molecular landscape underlying HD pathology, offering potential avenues for therapeutic application.


Asunto(s)
Fibroblastos , Enfermedad de Huntington , MicroARNs , Neuronas , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Humanos , Neuronas/metabolismo , Neuronas/patología , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Adulto , Edad de Inicio
6.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066314

RESUMEN

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Asunto(s)
Calcineurina , Enfermedad de Huntington , Humanos , Anciano , Calcineurina/genética , Enfermedad de Huntington/genética , Envejecimiento/genética , Factores de Transcripción/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
7.
Autophagy ; 19(9): 2613-2615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36727408

RESUMEN

Huntington disease (HD) is an inherited neurodegenerative disease with adult-onset clinical symptoms. However, the mechanism by which aging triggers the onset of neurodegeneration in HD patients remains unclear. Modeling the age-dependent progression of HD with striatal medium spiny neurons (MSNs) generated by direct reprogramming of fibroblasts from HD patients at different disease stages identifies age-dependent decline in critical cellular functions such as autophagy/macroautophagy and onset of neurodegeneration. Mechanistically, MSNs derived from symptomatic HD patients (HD-MSNs) are characterized by increased chromatin accessibility proximal to the MIR29B-3p host gene and its upregulation compared to MSNs from younger pre-symptomatic patients. MIR29B-3p in turn targets and represses STAT3 (signal transducer and activator of transcription 3) that controls the biogenesis of autophagosomes, leading to HD-MSN degeneration. Our recent study demonstrates age-associated microRNA (miRNA) and autophagy dysregulation linked to MSN degeneration, and potential approaches for protecting MSNs by enhancing autophagy in HD.Abbreviations: HD: Huntington disease; mHTT: mutant HTT; MIR9/9*-124: MIR9/9* and MIR124; miRNA: microRNA; MSN: medium spiny neuron; STAT3: signal transducer and activator of transcription 3.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedad de Huntington/genética , Factor de Transcripción STAT3 , Autofagia/genética , MicroARNs/genética , Cuerpo Estriado , Modelos Animales de Enfermedad , Proteína Huntingtina/genética
8.
Res Sq ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214956

RESUMEN

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

9.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303071

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Animales , Enfermedad de Huntington/patología , Cuerpo Estriado/fisiología , Neuronas/fisiología , Autofagia , MicroARNs/genética , Progresión de la Enfermedad , Modelos Animales de Enfermedad
10.
J Microbiol ; 46(1): 75-80, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18337697

RESUMEN

The SRL4 (YPL033C) gene was initially identified by the screening of Saccharomyces cerevisiae genes that play a role in DNA metabolism and/or genome stability using the SOS system of Escherichia coli. In this study, we found that the srl4Delta mutant cells were resistant to the chemicals that inhibit nucleotide metabolism and evidenced higher dNTP levels than were observed in the wild-type cells in the presence of hydroxyurea. The mutant cells also showed a significantly faster growth rate and higher dNTP levels at low temperature (16 degrees C) than were observed in the wild-type cells, whereas we detected no differences in the growth rate at 30 degrees C. Furthermore, srl4Delta was shown to suppress the lethality of mutations of the essential S phase checkpoint genes, RAD53 and LCD1. These results indicate that SRL4 may be involved in the regulation of dNTP production by its function as a negative regulator of ribonucleotide reductase.


Asunto(s)
Proteínas de Ciclo Celular/genética , Desoxirribonucleótidos/metabolismo , Mutación , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Frío , Daño del ADN , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/aislamiento & purificación , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Temperatura , Rayos Ultravioleta
11.
J Neuroophthalmol ; 28(3): 217-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18769288

RESUMEN

A 52-year-old man developed vertical gaze palsy, convergence spasm, and convergence-retraction nystagmus due to glioblastoma of the right thalamus. 18F-fluorodeoxyglucose positron emission tomography (PET) inadvertently demonstrated markedly increased metabolism in the medial rectus muscles. The hypermetabolism indicates active contraction of these extraocular muscles due to excessive convergence drive attributed to inappropriate activation or disrupted inhibition of convergence neurons by the diencephalic lesion.


Asunto(s)
Neoplasias Encefálicas/complicaciones , Glioblastoma/complicaciones , Trastornos de la Motilidad Ocular/diagnóstico por imagen , Músculos Oculomotores/diagnóstico por imagen , Espasmo/diagnóstico por imagen , Enfermedades Talámicas/complicaciones , Neoplasias Encefálicas/patología , Metabolismo Energético/fisiología , Esotropía/etiología , Esotropía/patología , Esotropía/fisiopatología , Movimientos Oculares/fisiología , Glioblastoma/patología , Humanos , Hidrocefalia/etiología , Hidrocefalia/patología , Hidrocefalia/fisiopatología , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Inhibición Neural/fisiología , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Trastornos de la Motilidad Ocular/etiología , Trastornos de la Motilidad Ocular/fisiopatología , Músculos Oculomotores/fisiopatología , Tomografía de Emisión de Positrones , Espasmo/etiología , Espasmo/fisiopatología , Síndrome , Tegmento Mesencefálico/patología , Tegmento Mesencefálico/fisiopatología , Enfermedades Talámicas/patología , Tálamo/patología , Tálamo/fisiopatología
12.
Ann Otol Rhinol Laryngol ; 117(3): 186-91, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18444478

RESUMEN

OBJECTIVES: We describe a case of multiple sclerosis presenting with sequential bilateral hearing loss. METHODS: A 46-year-old woman underwent a series of audiological and neurologic evaluations for sequential bilateral hearing losses that occurred 6 months apart. RESULTS: Initially, the patient suffered from sudden left hearing loss, and magnetic resonance imaging documented an enhancing lesion in the left middle cerebellar peduncle. Six months later, another episode of sudden vertigo, right hearing loss, and right facial palsy developed. Magnetic resonance imaging disclosed a new lesion in the right middle cerebellar peduncle. CONCLUSIONS: Sequential bilateral hearing loss may be a manifestation of multiple sclerosis. In younger patients with sudden hearing loss, multiple sclerosis should be included in the differential diagnosis.


Asunto(s)
Pérdida Auditiva Bilateral/etiología , Esclerosis Múltiple/diagnóstico , Potenciales Evocados , Parálisis Facial/etiología , Femenino , Pérdida Auditiva Súbita/etiología , Pruebas Auditivas , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Examen Neurológico , Nistagmo Patológico/etiología , Tegmento Mesencefálico/patología , Vértigo/etiología
13.
Dev Cell ; 46(1): 73-84.e7, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29974865

RESUMEN

The ability to convert human somatic cells efficiently to neurons facilitates the utility of patient-derived neurons for studying neurological disorders. As such, ectopic expression of neuronal microRNAs (miRNAs), miR-9/9∗ and miR-124 (miR-9/9∗-124) in adult human fibroblasts has been found to evoke extensive reconfigurations of the chromatin and direct the fate conversion to neurons. However, how miR-9/9∗-124 break the cell fate barrier to activate the neuronal program remains to be defined. Here, we identified an anti-neurogenic function of EZH2 in fibroblasts that acts outside its role as a subunit of Polycomb Repressive Complex 2 to directly methylate and stabilize REST, a transcriptional repressor of neuronal genes. During neuronal conversion, miR-9/9∗-124 induced the repression of the EZH2-REST axis by downregulating USP14, accounting for the opening of chromatin regions harboring REST binding sites. Our findings underscore the interplay between miRNAs and protein stability cascade underlying the activation of neuronal program.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/metabolismo , MicroARNs/genética , Neurogénesis/genética , Neuronas/citología , Proteínas Represoras/metabolismo , Adulto , Animales , Células Cultivadas , Cromatina/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Metilación , Ratones , MicroARNs/biosíntesis , Complejo Represivo Polycomb 2/metabolismo , Ubiquitina Tiolesterasa/biosíntesis , Adulto Joven
14.
J Neurol Sci ; 256(1-2): 75-80, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17382962

RESUMEN

BACKGROUND: In benign paroxysmal positional vertigo involving the horizontal canal (HC-BPPV), nystagmus may be induced by neck flexion in the pitch plane while sitting (head-bending nystagmus). OBJECTIVE: To determine the characteristics and lateralizing value of head-bending nystagmus in HC-BPPV. METHODS: Using video-oculography, head-bending nystagmus was recorded in 54 patients with HC-BPPV (32 canalolithiasis and 22 cupulolithiasis). Lesion side was determined by comparing intensity of the nystagmus induced by lateral head turning (head-turning nystagmus) in supine. RESULTS: Head-bending nystagmus was observed in 39 patients (72.2%) and lying-down nystagmus in 41 (75.9%). Thirty three patients (61.1%) showed both types of nystagmus while six (11.1%) had only head-bending and another eight (14.8%) showed only lying-down nystagmus. In 45 patients with asymmetrical head-turning nystagmus, the direction of head-bending nystagmus was mostly toward the affected ear in canalolithasis (88.9%) and toward the intact ear in cupulolithasis (80.0%). In 9 (16.7%) patients whose affected ear could not be determined due to symmetrical head-turning nystagmus, the particle repositioning maneuver based on the direction of head-bending or lying-down nystagmus resulted in the resolution of symptom. Two patients showed a transition from canalo- to cupulolithiasis during head-bending posture. CONCLUSION: In HC-BPPV, neck flexion in the pitch plane while sitting may generate nystagmus by inducing ampullopetal migration of the otolithic debris in the horizontal canal or by ampullofugal deflection of the cupula by the attached otolithic debris. Head-bending nystagmus may be a valuable sign for lateralizing the involved canal in HC-BPPV, especially when patients show symmetrical head-turning nystagmus. Conversion of canalo- into cupulolithiasis by the neck flexion supports the current explanation of the mechanisms of HC-BPPV.


Asunto(s)
Cuello/fisiopatología , Nistagmo Patológico/patología , Nistagmo Patológico/fisiopatología , Reflejo/fisiología , Canales Semicirculares/fisiopatología , Vértigo/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Masculino , Persona de Mediana Edad , Postura
15.
J Neurol Sci ; 263(1-2): 118-23, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17698083

RESUMEN

Double saccadic pulses (DSP) are saccadic intrusions that consist of an initial saccade away from a fixation followed immediately by a return saccade back to the fixation. DSP have been reported in patients with presumed multiple sclerosis and metabolic encephalopathy. However, DSP have not been described in a circumscribed brain lesion. We report a man who developed almost continuous DSP with intervening macrosaccadic oscillations from a circumscribed lesion in the dorsal pontine tegmentum which extended up to the midbrain level and spared the nucleus raphe interpositus where the pause cells reside. Damage to the projections from the superior colliculus to omnipause neurons and resultant dysfunction of omnipause neuron may be a mechanism of saccadic intrusions and oscillations observed in our patient with a circumscribed brainstem lesion.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Tronco Encefálico/patología , Fijación Ocular/fisiología , Trastornos de la Motilidad Ocular/etiología , Adulto , Tronco Encefálico/fisiopatología , Electrooculografía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
16.
17.
Nat Commun ; 7: 13534, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892458

RESUMEN

H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2-Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Metiltransferasas/metabolismo , ARN Largo no Codificante/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Histonas/metabolismo , Cinética , Lisina/metabolismo , Metilación , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
18.
Oncogene ; 23(10): 1950-3, 2004 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-14691448

RESUMEN

Transgenic mice containing novel oncogene HCCR-2 were generated to analyse the phenotype and to characterize the role of HCCR-2 in cellular events. Mice transgenic for HCCR-2 developed breast cancers and metastasis. The level of p53 in HCCR-2 transgenic mice was elevated in most tissues including breast, brain, heart, lung, liver, stomach, kidney, spleen, and lymph node. We examined whether stabilized p53 is functional in HCCR-2 transgenic mice. Defective induction of p53 responsive genes including p21WAF1, MDM2, and bax indicates that stabilized p53 in HCCR-2 transgenic mice exists in an inactive form. These results suggest that HCCR-2 represents an oncoprotein that is related to breast cancer development and regulation of the p53 tumor suppressor.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Mamarias Animales/genética , Proteínas Oncogénicas/genética , Animales , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Femenino , Genes p53/genética , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas , Mapeo Restrictivo , Neoplasias del Cuello Uterino/genética
19.
Neuron ; 88(4): 720-34, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26526390

RESUMEN

Injured peripheral neurons successfully activate a proregenerative transcriptional program to enable axon regeneration and functional recovery. How transcriptional regulators coordinate the expression of such program remains unclear. Here we show that hypoxia-inducible factor 1α (HIF-1α) controls multiple injury-induced genes in sensory neurons and contribute to the preconditioning lesion effect. Knockdown of HIF-1α in vitro or conditional knock out in vivo impairs sensory axon regeneration. The HIF-1α target gene Vascular Endothelial Growth Factor A (VEGFA) is expressed in injured neurons and contributes to stimulate axon regeneration. Induction of HIF-1α using hypoxia enhances axon regeneration in vitro and in vivo in sensory neurons. Hypoxia also stimulates motor neuron regeneration and accelerates neuromuscular junction re-innervation. This study demonstrates that HIF-1α represents a critical transcriptional regulator in regenerating neurons and suggests hypoxia as a tool to stimulate axon regeneration.


Asunto(s)
Axones/metabolismo , Ganglios Espinales/citología , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Hipoxia/genética , Neuronas Motoras/metabolismo , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/genética , Células Receptoras Sensoriales/metabolismo , Animales , Células Cultivadas , Ganglios Espinales/metabolismo , Técnicas de Silenciamiento del Gen , Hipoxia/metabolismo , Técnicas In Vitro , Ratones , Unión Neuromuscular , Traumatismos de los Nervios Periféricos/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Sci Rep ; 4: 4980, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24828152

RESUMEN

The Met receptor tyrosine kinase is an attractive target for cancer therapy as it promotes invasive tumor growth. SAIT301 is a novel anti-Met antibody, which induces LRIG1-mediated Met degradation and inhibits tumor growth. However, detailed downstream mechanism by which LRIG1 mediates target protein down-regulation is unknown. In the present study, we discovered that SAIT301 induces ubiquitination of LRIG1, which in turn promotes recruitment of Met and LRIG1 complex to the lysosome through its interaction with Hrs, resulting in concomitant degradation of both LRIG1 and Met. We also identified USP8 as a LRIG1-specific deubiquitinating enzyme, reporting the interaction between USP8 and LRIG1 for the first time. SAIT301 triggers degradation of LRIG1 by inhibiting the interaction of LRIG1 and USP8, which regulates ubiquitin modification and stability of LRIG1. In summary, SAIT301 employs ubiquitination of LRIG1 for its highly effective Met degradation. This unique feature of SAIT301 enables it to function as a fully antagonistic antibody without Met activation. We found that USP8 is involved in deubiquitination of LRIG1, influencing the efficiency of Met degradation. The relation of Met, LRIG1 and USP8 strongly supports the potential clinical benefit of a combination treatment of a USP8 inhibitor and a Met inhibitor, such as SAIT301.


Asunto(s)
Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/fisiología , Línea Celular Tumoral , Humanos , Lisosomas/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA