Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Genet ; 16(4): e1008661, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32294082

RESUMEN

In the Arabidopsis thaliana shoot apical meristem (SAM) the expression domains of Class III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN) genes are separated by a narrow boundary region from which new organs are initiated. Disruption of this boundary through either loss of function or ectopic expression of HD-ZIPIII and KAN causes ectopic or suppression of organ formation respectively, raising the question of how these transcription factors regulate organogenesis at a molecular level. In this study we develop a multi-channel FACS/RNA-seq approach to characterize global patterns of gene expression across the HD-ZIPIII-KAN1 SAM boundary. We then combine FACS, RNA-seq and perturbations of HD-ZIPIII and KAN expression to identify genes that are both responsive to REV and KAN1 and normally expressed in patterns that correlate with REV and KAN1. Our data reveal that a significant number of genes responsive to REV are regulated in opposite ways depending on time after induction, with genes associated with auxin response and synthesis upregulated initially, but later repressed. We also characterize the cell type specific expression patterns of auxin responsive genes and identify a set of genes involved in organogenesis repressed by both REV and KAN1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Factores de Transcripción/metabolismo , Análisis por Conglomerados , Citocininas/metabolismo , Citometría de Flujo , Ontología de Genes , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Inflorescencia , Reguladores del Crecimiento de las Plantas/metabolismo , RNA-Seq , Transducción de Señal , Transcriptoma
2.
Genes Dev ; 29(22): 2391-404, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26588991

RESUMEN

Two interrelated problems in biology are understanding the regulatory logic and predictability of morphological evolution. Here, we studied these problems by comparing Arabidopsis thaliana, which has simple leaves, and its relative, Cardamine hirsuta, which has dissected leaves comprising leaflets. By transferring genes between the two species, we provide evidence for an inverse relationship between the pleiotropy of SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) homeobox genes and their ability to modify leaf form. We further show that cis-regulatory divergence of BP results in two alternative configurations of the genetic networks controlling leaf development. In C. hirsuta, ChBP is repressed by the microRNA164A (MIR164A)/ChCUP-SHAPED COTYLEDON (ChCUC) module and ChASYMMETRIC LEAVES1 (ChAS1), thus creating cross-talk between MIR164A/CUC and AS1 that does not occur in A. thaliana. These different genetic architectures lead to divergent interactions of network components and growth regulation in each species. We suggest that certain regulatory genes with low pleiotropy are predisposed to readily integrate into or disengage from conserved genetic networks influencing organ geometry, thus rapidly altering their properties and contributing to morphological divergence.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Cardamine/crecimiento & desarrollo , Cardamine/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodominio/genética , Hojas de la Planta , Proteínas de Plantas/genética , Arabidopsis/anatomía & histología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cardamine/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
3.
PLoS Genet ; 12(7): e1006168, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27398935

RESUMEN

Shoot branching requires the establishment of new meristems harboring stem cells; this phenomenon raises questions about the precise regulation of meristematic fate. In seed plants, these new meristems initiate in leaf axils to enable lateral shoot branching. Using live-cell imaging of leaf axil cells, we show that the initiation of axillary meristems requires a meristematic cell population continuously expressing the meristem marker SHOOT MERISTEMLESS (STM). The maintenance of STM expression depends on the leaf axil auxin minimum. Ectopic expression of STM is insufficient to activate axillary buds formation from plants that have lost leaf axil STM expressing cells. This suggests that some cells undergo irreversible commitment to a developmental fate. In more mature leaves, REVOLUTA (REV) directly up-regulates STM expression in leaf axil meristematic cells, but not in differentiated cells, to establish axillary meristems. Cell type-specific binding of REV to the STM region correlates with epigenetic modifications. Our data favor a threshold model for axillary meristem initiation, in which low levels of STM maintain meristematic competence and high levels of STM lead to meristem initiation.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/citología , Brotes de la Planta/crecimiento & desarrollo , Alelos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Linaje de la Célula , Inmunoprecipitación de Cromatina , Genes de Plantas , Genotipo , Ácidos Indolacéticos/metabolismo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regulación hacia Arriba
4.
Proc Natl Acad Sci U S A ; 113(42): 11973-11978, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27698117

RESUMEN

A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD-ZIP) transcription factors are key mediators in the regulation of adaxial-abaxial patterning. Their expression is restricted adaxially during early development by the abaxially expressed microRNA (MIR)165/166, yet the mechanism that restricts MIR165/166 expression to abaxial leaf tissues remains unknown. Here, we show that class III and class II HD-ZIP proteins act together to repress MIR165/166 via a conserved cis-element in their promoters. Organ morphology and tissue patterning in plants, therefore, depend on a bidirectional repressive circuit involving a set of miRNAs and its targets.


Asunto(s)
Proteínas de Homeodominio/genética , Leucina Zippers/genética , MicroARNs/genética , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biomarcadores , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Unión Proteica , Carácter Cuantitativo Heredable , Elementos de Respuesta
6.
Development ; 139(23): 4416-27, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23095885

RESUMEN

The formation of cellular patterns during development requires the coordination of cell division with cell identity specification. This coordination is essential in patterning the highly elongated giant cells, which are interspersed between small cells, in the outer epidermis of the Arabidopsis thaliana sepal. Giant cells undergo endocycles, replicating their DNA without dividing, whereas small cells divide mitotically. We show that distinct enhancers are expressed in giant cells and small cells, indicating that these cell types have different identities as well as different sizes. We find that members of the epidermal specification pathway, DEFECTIVE KERNEL1 (DEK1), MERISTEM LAYER1 (ATML1), Arabidopsis CRINKLY4 (ACR4) and HOMEODOMAIN GLABROUS11 (HDG11), control the identity of giant cells. Giant cell identity is established upstream of cell cycle regulation. Conversely, endoreduplication represses small cell identity. These results show not only that cell type affects cell cycle regulation, but also that changes in the cell cycle can regulate cell type.


Asunto(s)
Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Ciclo Celular , Endorreduplicación/genética , Flores/citología , Epidermis de la Planta/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calpaína/genética , Calpaína/metabolismo , Diferenciación Celular , División Celular , Replicación del ADN , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Células Gigantes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis , Mutación , Epidermis de la Planta/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
7.
Mol Syst Biol ; 9: 654, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23549482

RESUMEN

In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Células Vegetales/metabolismo , Brotes de la Planta/genética , Células Madre/metabolismo , Transcripción Genética , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Diferenciación Celular , Simulación por Computador , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Modelos Genéticos , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
ACS Sens ; 9(6): 2858-2868, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38787339

RESUMEN

Copper participates in a range of critical functions in the nervous system and human brain. Disturbances in brain copper content is strongly associated with neurological diseases. For example, changes in the level and distribution of copper are reported in neuroblastoma, Alzheimer's disease, and Lewy body disorders, such as Parkinson disease and dementia with Lewy bodies (DLB). There is a need for more sensitive techniques to measure intracellular copper levels to have a better understanding of the role of copper homeostasis in neuronal disorders. Here, we report a reaction-based near-infrared (NIR) ratiometric fluorescent probe CyCu1 for imaging Cu2+ in biological samples. High stability and selectivity of CyCu1 enabled the probe to be deployed as a sensor in a range of systems, including SH-SY5Y cells and neuroblastoma tumors. Furthermore, it can be used in plant cells, reporting on copper added to Arabidopsis roots. We also used CyCu1 to explore Cu2+ levels and distribution in post-mortem brain tissues from patients with DLB. We found significant decreases in Cu2+ content in the cytoplasm, neurons, and extraneuronal space in the degenerating substantia nigra in DLB compared with healthy age-matched control tissues. These findings enhance our understanding of Cu2+ dysregulation in Lewy body disorders. Our probe also shows promise as a photoacoustic imaging agent, with potential for applications in bimodal imaging.


Asunto(s)
Encéfalo , Cobre , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Cobre/análisis , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Línea Celular Tumoral , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/metabolismo , Imagen Óptica/métodos
9.
PLoS Biol ; 8(10): e1000516, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20976043

RESUMEN

Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Meristema , Microtúbulos/metabolismo , Morfogénesis , Brotes de la Planta , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Benzamidas/farmacología , Transporte Biológico , Polaridad Celular , Dinitrobencenos/farmacología , Proteínas de Transporte de Membrana/genética , Meristema/anatomía & histología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Modelos Teóricos , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Mecánico , Sulfanilamidas/farmacología , Moduladores de Tubulina/farmacología
10.
Sci Rep ; 13(1): 22258, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097643

RESUMEN

Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved. Here, we over-expressed miR165a in a dexamethasone inducible manner and identified differentially expressed genes in the SAM through RNA-Seq. Simultaneously, using multi-channel FACS combined with RNA-Seq approach, we characterized global transcriptome patterns in miR165a expressing cell-types compared to HD-ZIPIII expressing cell-types and other cell-types in SAM. By integrating our results we identified sets of genes which are up-regulated by miR165a as well have enriched expression in miR165a cell-types, and vice-versa. Known plant development related genes such as HD-ZIPIII and their targets LITTLE ZIPPERs, Like AUXIN RESISTANT 2, BEL1-like homeodomain 6, ROTUNDIFOLIA like 16 were found to be down-regulated. Among the up-regulated genes, GIBBERELLIN 2-OXIDASEs, various elemental transporters (YSL3, ZIFL1, SULTR), and other transporter genes were prominent. Thus, the genes identified in this study help to unravel the molecular mechanism of miR165a and HD-ZIPIII regulated plant development and stress response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema , Transcriptoma , MicroARNs/genética
11.
Proc Natl Acad Sci U S A ; 106(38): 16529-34, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19717465

RESUMEN

A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Homeodominio/genética , Brotes de la Planta/genética , Algoritmos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Meristema/genética , Meristema/metabolismo , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
12.
iScience ; 25(10): 105062, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157591

RESUMEN

At the Arabidopsis shoot apex, epidermal cells are planar-polarized along an axis marked by the asymmetric localization patterns of several proteins including PIN-FORMED1 (PIN1), which facilitates the directional efflux of the plant hormone auxin to pattern phyllotaxis. While PIN1 polarity is known to be regulated non-cell autonomously via the MONOPTEROS (MP) transcription factor, how this occurs has not been determined. Here, we use mosaic expression of the serine threonine kinase PINOID (PID) to test whether PIN1 polarizes according to the polarity of neighboring cells. Our findings reveal that PIN1 is insensitive to the polarity of PIN1 in neighboring cells arguing against auxin flux or extracellular auxin concentrations acting as a polarity cue, in contrast to previous model proposals.

13.
Methods Mol Biol ; 2200: 295-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33175383

RESUMEN

Plants develop lateral organs such as leaves and flowers throughout their post-embryonic life from a structure called the shoot apical meristem (SAM), located at the plant shoot apex. This process is highly dynamic, and therefore in order to understand meristem and organ development, it is critical to be able to analyze these processes with high temporal and spatial resolution. Although several protocols have been published for imaging the Arabidopsis inflorescence meristem, gaining access to the vegetative meristem for imaging has been considered more difficult. Here we describe a method to dissect young Arabidopsis seedlings in order to obtain a clear view of the vegetative meristem and young leaf primordia using confocal microscopy.


Asunto(s)
Arabidopsis , Meristema , Hojas de la Planta , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Meristema/citología , Meristema/crecimiento & desarrollo , Microscopía Confocal , Microscopía Fluorescente , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo
14.
Curr Biol ; 15(21): 1899-911, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16271866

RESUMEN

BACKGROUND: Plants produce leaf and flower primordia from a specialized tissue called the shoot apical meristem (SAM). Genetic studies have identified a large number of genes that affect various aspects of primordium development including positioning, growth, and differentiation. So far, however, a detailed understanding of the spatio-temporal sequence of events leading to primordium development has not been established. RESULTS: We use confocal imaging of green fluorescent protein (GFP) reporter genes in living plants to monitor the expression patterns of multiple proteins and genes involved in flower primordial developmental processes. By monitoring the expression and polarity of PINFORMED1 (PIN1), the auxin efflux facilitator, and the expression of the auxin-responsive reporter DR5, we reveal stereotypical PIN1 polarity changes which, together with auxin induction experiments, suggest that cycles of auxin build-up and depletion accompany, and may direct, different stages of primordium development. Imaging of multiple GFP-protein fusions shows that these dynamics also correlate with the specification of primordial boundary domains, organ polarity axes, and the sites of floral meristem initiation. CONCLUSIONS: These results provide new insight into auxin transport dynamics during primordial positioning and suggest a role for auxin transport in influencing primordial cell type.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Modelos Biológicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cartilla de ADN , Flores/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Confocal
15.
Elife ; 62017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28895530

RESUMEN

In plants the dorsoventral boundary of leaves defines an axis of symmetry through the centre of the organ separating the top (dorsal) and bottom (ventral) tissues. Although the positioning of this boundary is critical for leaf morphogenesis, how the boundary is established and how it influences development remains unclear. Using live-imaging and perturbation experiments we show that leaf orientation, morphology and position are pre-patterned by HD-ZIPIII and KAN gene expression in the shoot, leading to a model in which dorsoventral genes coordinate to regulate plant development by localizing auxin response between their expression domains. However we also find that auxin levels feedback on dorsoventral patterning by spatially organizing HD-ZIPIII and KAN expression in the shoot periphery. By demonstrating that the regulation of these genes by auxin also governs their response to wounds, our results also provide a parsimonious explanation for the influence of wounds on leaf dorsoventrality.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Morfogénesis , Factores de Transcripción/genética
16.
Curr Biol ; 26(23): 3202-3208, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27818174

RESUMEN

The periodic formation of plant organs such as leaves and flowers gives rise to intricate patterns that have fascinated biologists and mathematicians alike for hundreds of years [1]. The plant hormone auxin plays a central role in establishing these patterns by promoting organ formation at sites where it accumulates due to its polar, cell-to-cell transport [2-6]. Although experimental evidence as well as modeling suggest that feedback from auxin to its transport direction may help specify phyllotactic patterns [7-12], the nature of this feedback remains unclear [13]. Here we reveal that polarization of the auxin efflux carrier PIN-FORMED 1 (PIN1) is regulated by the auxin response transcription factor MONOPTEROS (MP) [14]. We find that in the shoot, cell polarity patterns follow MP expression, which in turn follows auxin distribution patterns. By perturbing MP activity both globally and locally, we show that localized MP activity is necessary for the generation of polarity convergence patterns and that localized MP expression is sufficient to instruct PIN1 polarity directions non-cell autonomously, toward MP-expressing cells. By expressing MP in the epidermis of mp mutants, we further show that although MP activity in a single-cell layer is sufficient to promote polarity convergence patterns, MP in sub-epidermal tissues helps anchor these polarity patterns to the underlying cells. Overall, our findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling. We propose that this feedback process acts broadly to generate periodic plant architectures.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Periodicidad , Factores de Transcripción/metabolismo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión al ADN/genética , Mutación , Factores de Transcripción/genética
17.
Methods Mol Biol ; 1110: 431-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24395274

RESUMEN

The aboveground tissues of higher plants are derived from a small population of stem cells located at the shoot apex within a structure called the shoot apical meristem (SAM). The SAM not only includes the stem cells but also incorporates a region from which lateral organs arise. The SAM is therefore of prime interest for understanding plant growth and development. In this chapter we outline methods for using confocal microscopy to image the Arabidopsis inflorescence SAM. This method enables detailed examination of cell division and growth patterns (Reddy et al., Development 131:4225-4237, 2004) as well as gene expression and protein localization patterns over time (Heisler et al. Curr Biol 15:1899-1911, 2005). When combined with perturbation approaches, the method offers an extremely powerful system for investigating SAM function in great detail.


Asunto(s)
Arabidopsis/citología , Arabidopsis/fisiología , Inflorescencia/citología , Inflorescencia/fisiología , Meristema/citología , Meristema/fisiología , Microscopía Confocal/métodos , Suelo , Supervivencia Tisular
18.
Curr Biol ; 21(5): 345-52, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21333538

RESUMEN

BACKGROUND: Cell numbers in above-ground meristems of plants are thought to be maintained by a feedback loop driven by perception of the glycopeptide ligand CLAVATA3 (CLV3) by the CLAVATA1 (CLV1) receptor kinase and the CLV2/CORYNE (CRN) receptor-like complex. CLV3 produced in the stem cells at the meristem apex limits the expression level of the stem cell-promoting homeodomain protein WUSCHEL (WUS) in the cells beneath, where CLV1 and WUS RNA are localized. WUS downregulation nonautonomously reduces stem cell proliferation. Overexpression of CLV3 eliminates the stem cells, causing meristem termination, and loss of CLV3 function allows meristem overproliferation. There are many questions regarding the CLV3/CLV1 interaction, including where in the meristem it occurs, how it is regulated, and how it is that a large range of CLV3 concentrations gives no meristem size phenotype. RESULTS: Here we use genetics and live imaging to examine the cell biology of CLV1 in Arabidopsis meristematic tissue. We demonstrate that plasma membrane-localized CLV1 is reduced in concentration by CLV3, which causes trafficking of CLV1 to lytic vacuoles. We find that changes in CLV2 activity have no detectable effects on CLV1 levels. We also find that CLV3 appears to diffuse broadly in meristems, contrary to a recent sequestration model. CONCLUSIONS: This study provides a new model for CLV1 function in plant stem cell maintenance and suggests that downregulation of plasma membrane-localized CLV1 by its CLV3 ligand can account for the buffering of CLV3 signaling in the maintenance of stem cell pools in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos/genética , Proteínas de Homeodominio/metabolismo , Meristema/metabolismo , Microscopía Confocal , Proteínas Serina-Treonina Quinasas , Transporte de Proteínas/fisiología
19.
Development ; 134(19): 3539-48, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17827180

RESUMEN

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tipificación del Cuerpo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/crecimiento & desarrollo , Modelos Biológicos , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética
20.
Cell ; 130(6): 1044-56, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17889649

RESUMEN

In plants, cell polarity and tissue patterning are connected by intercellular flow of the phytohormone auxin, whose directional signaling depends on polar subcellular localization of PIN auxin transport proteins. The mechanism of polar targeting of PINs or other cargos in plants is largely unidentified, with the PINOID kinase being the only known molecular component. Here, we identify PP2A phosphatase as an important regulator of PIN apical-basal targeting and auxin distribution. Genetic analysis, localization, and phosphorylation studies demonstrate that PP2A and PINOID both partially colocalize with PINs and act antagonistically on the phosphorylation state of their central hydrophilic loop, hence mediating PIN apical-basal polar targeting. Thus, in plants, polar sorting by the reversible phosphorylation of cargos allows for their conditional delivery to specific intracellular destinations. In the case of PIN proteins, this mechanism enables switches in the direction of intercellular auxin fluxes, which mediate differential growth, tissue patterning, and organogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/embriología , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Polaridad Celular , Endosomas/metabolismo , Genotipo , Proteínas de Transporte de Membrana/genética , Meristema/enzimología , Meristema/metabolismo , Mutación , Fenotipo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Plantones/enzimología , Plantones/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA