Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202401469, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747031

RESUMEN

Here, we introduce an organic/inorganic composite hydrogel as a versatile gel electrode material. This composite hydrogel was formed by simply mixing an aqueous solution of flat microparticles of tungsten oxide, exhibiting superior water dispersibility, with a hydrogel composed of a water-soluble polyaramide-based polymer hydrogelator. The resulting composite hydrogel exhibited uniform dispersion of tungsten oxide flat particles throughout the hydrogel matrix, supplementing the structure formed by the polymer hydrogelator. It maintained the gel-forming capability and thixotropic behavior inherent to the polymer hydrogelator while showcasing the electrochemical characteristics of tungsten oxide. With its spreadability and applicability to various electrode shapes, a composite hydrogel is presented as a potential spreadable gel electrode material.

2.
Gels ; 10(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786215

RESUMEN

The creation of polymer composite materials by compositing fillers into polymer materials is an effective method of improving the properties of polymer materials, and the development of new fillers and their novel composite methods is expected to lead to the creation of new polymer composite materials. In this study, we develop a new filler material made of low-molecular-weight gelators by applying a gelation process that simultaneously performs the swelling (gelation) of crosslinked polymer materials and the self-assembly of low-molecular-weight gelators into low-dimensional crystals in organic solvents within polymer materials. The gelation process of crosslinking rubber-based polymers using alkylhydrazides/toluene as the low-molecular-weight gelator allowed us to composite self-assembled sheet-like crystals of alkylhydrazides as fillers in polymeric materials, as suggested by various microscopic observations, including infrared absorption measurements, small-angle X-ray diffraction measurements and thermal analysis, microscopy, and infrared absorption measurements. Furthermore, tensile tests of the composite materials demonstrated that the presence of fillers improved both the Young's modulus and the tensile strength, as well as the elongation at yield. Additionally, heat treatment was shown to facilitate filler dispersion and enhance the mechanical properties. The findings demonstrate the potential of self-assembled sheet-like crystals of low-molecular-weight gelators as novel filler materials for polymers. The study's composite method utilizing gelators via gelation proved effective.

3.
Gels ; 9(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37754398

RESUMEN

Molecular oleogels have the potential to be used as materials in healthcare applications. However, their design and synthesis are complex, thus requiring simple and effective methods for their preparation. This paper reports on alkylanilides that are low molecular-weight organogelators, which when appropriately mixed with different alkyl chain lengths could result in the formation of mixed molecular gels that exhibit excellent gel-forming ability and mechanical properties. In addition, the single and mixed molecular organogel systems were found to be applicable as single and mixed molecular oleogel systems capable of gelling oils such as olive oil and squalane. This has been found to be true, especially in molecular oleogel systems consisting of squalane, which is used as solvents in healthcare. The mixed squalene-molecular oleogel systems showed an increase in the critical (minimum) gelation concentration from 1.0 to 0.1 wt.% in the single system and an improvement in the thixotropic behavior recovery time. The thixotropic behavior of the molecular oleogels in the mixed system was quantitatively evaluated through dynamic viscoelasticity measurements; however, it was not observed for the single-system molecular oleogels. Scanning electron microscopy of the xerogels suggested that this behavior is related to the qualitative improvement of the network owing to the refinement of the mesh structure. These mixed molecular oleogels, composed of alkylanilides displaying such thixotropic behavior, could be used as candidates for ointment-base materials in the healthcare field.

4.
Gels ; 9(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888392

RESUMEN

Polybenzoxazine (PBZ) exhibits excellent heat resistance, and PBZ derivatives have been designed and synthesized to achieve high performance. However, the application range of PBZ is limited by the strong interactions between molecular chains and its low solubility in organic solvents, thereby limiting its processability. This study focused on the benzoxazine structure as the molecular backbone of new hydrogel materials that can be applied as electrolyte materials and prepared functional gel materials. Here, we prepared hydrogels by water-solubilizing PBZ derivatives, which typically exhibit low solubility in organic solvents. Although studies on the hydrophilization of PBZ and its complexation with hydrophilic polymers have been conducted, no studies have been performed on the hydrogelation of PBZ. First, the phenol in the organic solvent-insoluble PBZ thin film obtained after the thermal ring-opening polymerization of the monomer was transformed into sodium phenoxide by immersion in a NaOH aqueous solution to water-solubilize it and obtain a hydrogel thin film. Although the hydrogel thin film exhibited low mechanical strength, a free-standing hydrogel film with improved strength was obtained through the double network gelation method with an acrylamide monomer system. The physical properties of the polymer composite hydrogel thin film were evaluated. The ionic conductivity of the hydrogel thin films was in the order of 10-4 S cm-1, indicating the potential of PBZ as an electrolyte hydrogel material. However, improving its ionic conductivity will be undertaken in future studies.

5.
Gels ; 9(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37754361

RESUMEN

Polymer hydrogels, including molecular hydrogels, are expected to become materials for healthcare and medical applications, but there is a need to create new functional molecular gels that can meet the required performance. In this paper, for creating new molecular hydrogel materials, the gel formation behavior and its rheological properties for the molecular gels composed of a polymer hydrogelator, poly(3-sodium sulfo-p-phenylene-terephthalamide) polymer (NaPPDT), and water-soluble polymer with the polar group, poly(vinyl alcohol) (PVA) in various concentrations were examined. Molecular hydrogel composites formed from simple mixtures of NaPPDT aqueous solutions (0.1 wt.%~1.0 wt.%) and PVA aqueous solutions exhibited thixotropic behavior in the relatively low concentration region (0.1 wt.%~1.0 wt.%) and spinnable gel formation in the dense concentration region (4.0 wt.%~8.0 wt.%) with 1.0 wt.% NaPPDT aq., showing a characteristic concentration dependence of mechanical behavior. In contrast, each single-component aqueous solution showed no such gel formation in the concentration range in the present experiments. No gel formation behavior was also observed when mixed with common anionic polymers other than NaPPDT. This improvement in gel-forming ability due to mixing may be due to the increased density of the gel's network structure composed of hydrogelator and PVA and rigidity owing to NaPPDT.

6.
Gels ; 9(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37754411

RESUMEN

Molecular gels, which are soft and flexible materials, are candidates for healthcare, cosmetic base, and electronic applications as new materials. In this study, a new polymeric organogelator bearing a polyrotaxane (PR) structure was developed and could induce the gelation of N',N″-dimethylformamide (DMF), a known solvent for dissolving polymeric materials and salts. Furthermore, the resulting DMF molecular gels exhibited thixotropic properties, observed by the inversion method using vials, which are essential for gel spreading. The scanning electron microscopy of the xerogels suggested that the gel-forming ability and thixotropic property of gels were imparted by the network of the laminated aggregates of thin layer material similar to those of other gels made of clay materials. This thin layer material would be formed by the aggregation of polymeric organogelators. The dynamic viscoelasticity measurements of the obtained gels revealed the stability and pseudo-thixotropic behaviors of the obtained gels, as well as a specific concentration effect on the mechanical behavior of the gels attributed to the introduction of the PR structure. Additionally, the preparation of the polymer organogelator/polymer composites was investigated to improve the mechanical properties via the filler effect induced by the agglomerates of organogelator. Moreover, the tensile tests confirmed that the introduction of the gelator enhanced the mechanical properties of the composites.

7.
Dalton Trans ; 52(46): 17375-17388, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37941474

RESUMEN

Eighteen mononuclear copper(II) complexes with oxygen-containing N4O1 pentadentate ligands were prepared. The ligand library consists of 2-aminoethanol derivatives ((Ar1CH2)(Ar2CH2)NCH2CH2OCH2Ar3) bearing three nitrogen-containing heteroaromatics (Ars) including pyridine, quinoline and isoquinoline via a methylene linker. Systematic replacements of pyridine binding sites with quinolines and isoquinolines reveal the general trends in the perturbation of bond distances and angles, the redox potential and the absorption maximum wavelength of the copper(II) complexes, depending on the position and number of (iso)quinoline heteroaromatics. The small effect on the redox potentials resulting from quinoline substitution at the Ar3 position (near oxygen) of the ligand comes from the steric hindrance of the peri hydrogen atom in the quinoline moiety at this position, which removes the counter anion to enhance the coordination of quinoline nitrogen and ether oxygen atoms to the metal centre. In the absorption spectra of copper(II) complexes in the d-d transition region, the quinoline substitution at this site (Ar3) exhibits an opposite effect to those at the Ar1 and Ar2 sites. The electronic and steric contributions of the heteroaromatic binding sites to the ligand properties are comprehensively discussed.

8.
Chem Asian J ; 17(16): e202200461, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35703338

RESUMEN

Low-molecular-weight hydrogelators containing stearoyl, glycine, and D-glucamine moieties with or without methyl groups were synthesized to prepare chemically tuned molecular hydrogels. To evaluate the role of hydrogen bonding of hydrogelators in molecular hydrogel formation, the author has newly synthesized hydrogelators with or without methyl groups at their N-H in amide groups, contributing to the hydrogen bond formation in fiber in molecular hydrogels. The obtained hydrogels exhibited improved thixotropic performance with tunable softness, exhibiting pseudo-reversible thixotropic cycles that depended on the methyl substitution positions in the hydrogelators. To change the hydrogen bonds' positions by chemical modification has made it possible to tune the mechanical properties of molecular gels.


Asunto(s)
Hidrogeles , Hidrogeles/química , Enlace de Hidrógeno , Peso Molecular
9.
Gels ; 8(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36286139

RESUMEN

The author reported molecular organogels using N-alkylhydantoins as new low-molecular-weight gelators for the first time, and thixotropic mixed molecular organogels using a set of N-alkylhydantoin gelators with different alkyl chain lengths. These homologous compounds with different alkyl chains are found to form macroscopic crystals or solution states in polar solvents, but form homogeneous organogels in non-polar solvents, such as n-octane and squalane. Although there is no significant increase in the minimum gelation concentration of the mixed molecular gels using squalane as a solvent, these mixed molecular organogels show improved mechanical properties, especially in their thixotropic behavior, which is not observed in the single N-alkylhydantoin gels. Furthermore, they exhibit reversible thixotropic behavior with quick recovery of the gel state in a minute by quantitatively measuring dynamic viscoelasticity measurements of rheometry of mixed molecular gels. Based on the morphological observations of the xerogels, the self-assembling fibers of the gelators become finer, indicating an increase in the density of the mesh structure inside the gel, which could explain its thixotropic behavior. These thixotropic mixed molecular gels may be applicable to ointment base materials, because they are gelled with squalane oil.

10.
Gels ; 8(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35892728

RESUMEN

To expand the range of applications of hydrogels, researchers are interested in developing novel molecular hydrogel materials that have affinities for the living body and the ability to mediate electrical signals. In this study, a simple mixing method for creating a novel composite molecular gel is employed, which combines a hydrophilic conductive polymer, a polyaniline/phosphoric acid complex, and a polymer hydrogelator as a matrix. The composite hydrogel showed an improved gel-forming ability; more effective mechanical properties, with an increased strain value at the sol-gel transition point compared to the single system, which may be sufficient for paintable gel; and a better electrochemical response, due to the electrically conducting polyaniline component. These findings demonstrate the applicability of the new composite hydrogels to new potential paintable electrode materials.

11.
ACS Omega ; 3(11): 14869-14874, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30555995

RESUMEN

Here, we demonstrate the novel double-component liquid crystalline colloids composed of mesogenic inorganic nanosheets and the rods with dynamically variable length controlled by temperature. As the length-controllable rod, stiff biopolymer microtubule is used, which was successfully polymerized/depolymerized from tubulin proteins through a biochemical process even in the presence of the nanosheets. The mesoscopic structure of the liquid crystal phase was reversibly modifiable as caused by the change of the rod length.

12.
J Phys Chem B ; 122(11): 2957-2961, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29455532

RESUMEN

Anisotropic chemical wave propagation of self-oscillating Belousov-Zhabotinsky (BZ) reaction was demonstrated in the poly( N-isopropylacrylamide) gel films embedded with macroscopically aligned liquid crystalline inorganic nanosheets. Although the average propagation rate of chemical wave v̅ was 3.56 mm min-1 in the gels without nanosheets, the propagation was retarded in the gels with 1 wt % of nanosheets: [Formula: see text] = 1.89 mm min-1 and [Formula: see text] = 1.33 mm min-1 along the direction parallel and perpendicular to the nanosheet planes, respectively. Thus, the wave propagation is anisotropic with the anisotropy ratio [Formula: see text] = 1.42 in these gels and the periodic patterns formed by the BZ reaction were concentric ellipses, different from circles seen in isotropic gels. Furthermore, the propagation rate and degree of anisotropy were controllable by nanosheet concentration. These phenomena can be explained that the diffusion of molecules inside the gel is effectively hindered along the direction perpendicular to the nanosheet planes due to the very large aspect ratio of the aligned nanosheets. The present systems will be applicable for anisotropic self-oscillating soft actuators with one-dimensional motions as well as for ideal model system of BZ reactions.

13.
R Soc Open Sci ; 4(12): 171117, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29308249

RESUMEN

A composite gel composed of a water-soluble aromatic polyamide hydrogelator and the nanosheet Laponite®, a synthetic layered silicate, was produced and found to exhibit thixotropic behaviour. Whereas the composite gel contains the gelator at the same concentration as the molecular gel made by the gelator only, the composite gel becomes a softer thixotropic gel compared to the molecular gel made by the gelator only. The reason for this could be that bundles of polymer gelator may be loosened and the density of the polymer network increased in the presence of Laponite.

14.
Gels ; 2(2)2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30674145

RESUMEN

Ointments have been widely used as an efficient means of transdermal drug application for centuries. In order to create ointments suitable for various new medicinal drugs, the creation of ointment base materials, such as gels, has attracted much research attention in this decade. On the other hand, the chemical tuning of low-molecular-weight gelators (LMWGs) has been increasingly studied for two decades because LMWGs can be tailored for different purposes by molecular design and modification. In this review, several series of studies related to the creation of ointment base materials with enhanced properties using existing and newly-created LMWGs are summarized.

15.
Langmuir ; 20(16): 6549-55, 2004 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-15274553

RESUMEN

Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.


Asunto(s)
Electrólitos/química , Hidrogeles/química , Polihidroxietil Metacrilato/química , Polímeros/química , Ácidos Sulfónicos/química , Fricción , Hidrogeles/síntesis química , Estructura Molecular , Peso Molecular , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA