Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neuroinflammation ; 21(1): 50, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365833

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain's resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that captures AD patient-specific microglial characteristics using physiologically relevant and experimentally flexible culture conditions. METHODS: To address this shortcoming, we developed novel 3D Matrigel-based monocyte-derived microglia-like cell (MDMi) mono-cultures and co-cultures with neuro-glial cells (ReNcell VM). We used single-cell RNA sequencing (scRNAseq) analysis to compare the transcriptomic signatures of MDMi between model systems (2D, 3D and 3D co-culture) and against published human microglia datasets. To demonstrate the potential of MDMi for use in personalized pre-clinical strategies, we generated and characterized MDMi models from sixteen AD patients and matched healthy controls, and profiled cytokine responses upon treatment with anti-inflammatory drugs (dasatinib and spiperone). RESULTS: MDMi in 3D exhibited a more branched morphology and longer survival in culture compared to 2D. scRNAseq uncovered distinct MDMi subpopulations that exhibit higher functional heterogeneity and best resemble human microglia in 3D co-culture. AD MDMi in 3D co-culture showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-ß. Drug testing assays revealed patient- and model-specific cytokine responses. CONCLUSION: Our study presents a novel, physiologically relevant and AD patient-specific 3D microglia cell model that opens avenues towards improving personalized drug development strategies in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Neuroglía/metabolismo , Péptidos beta-Amiloides/metabolismo , Citocinas/metabolismo
2.
J Neuroinflammation ; 19(1): 58, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227277

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia. METHODS: In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls. RESULTS: We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression. CONCLUSIONS: Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/patología , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Humanos , Microglía/metabolismo , Monocitos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fagocitosis
3.
J Neurosci Res ; 98(8): 1619-1645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562306

RESUMEN

Generating neurons from human stem cells has potential for brain damage therapy and neurogenesis modeling, but current efficacy is limited by culture heterogeneity and the lack of markers. We have previously reported the heparan sulfate proteoglycans (HSPGs) glypican-1 (GPC1) and -4 (GPC4) as the markers of lineage-specific human neural stem cells (hNSCs) and mediators of hNSC lineage potential. Here, we further examined phenotypical characteristics and GPC1 and GPC4 during neural differentiation of hNSCs in the presence of two neurogenic growth factors reported to bind to heparan sulfate: brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor-B (PDGF-B). In hNSC neural cultures, GPC1 and GPC4 were expressed along neurites and cell bodies in long-term (40-60 days) neural differentiation cultures demonstrating the areas of differential localization-suggesting potentially different functions. Neural differentiation cultures in the presence of BDNF or PDGF-B generated phenotypically different neural cells with BDNF treatment associated with higher GPC4 versus GPC1 expression, increased heterogeneity, and differential neuron subtype marker expression to PDGF-B cultures. PDGF-B cultures exhibited higher levels of spontaneous activity and reduced heterogeneity over long-term culture associated with decreased GPC4. Untreated neural cultures were highly variable, supporting the use of neuroregulatory growth factors for guided differentiation. Targeted siRNA downregulation of GPC1/4 reduced neural differentiation markers and altered response to exogenous BDNF and PDGF-B. This work confirms GPC1 and GPC4 as regulators of human neural differentiation and supports their use as novel markers of neural cell characterization.


Asunto(s)
Glipicanos/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Becaplermina/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular , Supervivencia Celular , Humanos
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166967, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38008230

RESUMEN

The blood-brain-barrier (BBB) has a major function in maintaining brain homeostasis by regulating the entry of molecules from the blood to the brain. Key players in BBB function are BBB transporters which are highly expressed in brain endothelial cells (BECs) and critical in mediating the exchange of nutrients and waste products. BBB transporters can also influence drug delivery into the brain by inhibiting or facilitating the entry of brain targeting therapeutics for the treatment of brain disorders, such as Alzheimer's disease (AD). Recent studies have shown that AD is associated with a disrupted BBB and transporter dysfunction, although their roles in the development in AD are not fully understand. Modulation of BBB transporter activity may pose a novel approach to enhance the delivery of drugs to the brain for enhanced treatment of AD. In this review, we will give an overview of key functions of BBB transporters and known changes in AD. In addition, we will discuss current strategies for transporter modulation for enhanced drug delivery into the brain.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Células Endoteliales , Encéfalo , Proteínas de Transporte de Membrana
5.
Neurotherapeutics ; 21(1): e00299, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241156

RESUMEN

The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Células Endoteliales/metabolismo , Preparaciones Farmacéuticas/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica , Proteínas de Transporte de Membrana/metabolismo
6.
Biochimie ; 223: 147-157, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640996

RESUMEN

Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lncSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.


Asunto(s)
Islas de CpG , Metilación de ADN , Células Madre Mesenquimatosas , Células-Madre Neurales , Humanos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular , Nicho de Células Madre
7.
Fluids Barriers CNS ; 21(1): 65, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138578

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder with minimally effective treatment options. An important hurdle in ALS drug development is the non-invasive therapeutic access to the motor cortex currently limited by the presence of the blood-brain barrier (BBB). Focused ultrasound and microbubble (FUS+ MB) treatment is an emerging technology that was successfully used in ALS patients to temporarily open the cortical BBB. However, FUS+ MB-mediated drug delivery across ALS patients' BBB has not yet been reported. Similarly, the effects of FUS+ MB on human ALS BBB cells remain unexplored. METHODS: Here we established the first FUS+ MB-compatible, fully-human ALS patient-cell-derived BBB model based on induced brain endothelial-like cells (iBECs) to study anti-TDP-43 antibody delivery and FUS+ MB bioeffects in vitro. RESULTS: Generated ALS iBECs recapitulated disease-specific hallmarks of BBB pathology, including reduced BBB integrity and permeability, and TDP-43 proteinopathy. The results also identified differences between sporadic ALS and familial (C9orf72 expansion carrying) ALS iBECs reflecting patient heterogeneity associated with disease subgroups. Studies in these models revealed successful ALS iBEC monolayer opening in vitro with no adverse cellular effects of FUS+ MB as reflected by lactate dehydrogenase (LDH) release viability assay and the lack of visible monolayer damage or morphology change in FUS+ MB treated cells. This was accompanied by the molecular bioeffects of FUS+ MB in ALS iBECs including changes in expression of tight and adherens junction markers, and drug transporter and inflammatory mediators, with sporadic and C9orf72 ALS iBECs generating transient specific responses. Additionally, we demonstrated an effective increase in the delivery of anti-TDP-43 antibody with FUS+ MB in C9orf72 (2.7-fold) and sporadic (1.9-fold) ALS iBECs providing the first proof-of-concept evidence that FUS+ MB can be used to enhance the permeability of large molecule therapeutics across the BBB in a human ALS in vitro model. CONCLUSIONS: Together, this study describes the first characterisation of cellular and molecular responses of ALS iBECs to FUS+ MB and provides a fully-human platform for FUS+ MB-mediated drug delivery screening on an ALS BBB in vitro model.


Asunto(s)
Esclerosis Amiotrófica Lateral , Barrera Hematoencefálica , Proteínas de Unión al ADN , Microburbujas , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Humanos , Proteínas de Unión al ADN/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Anticuerpos/administración & dosificación , Ondas Ultrasónicas , Células Cultivadas
8.
ACS Chem Neurosci ; 15(7): 1432-1455, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38477556

RESUMEN

Alzheimer's disease (AD) is the most prevalent cause of dementia characterized by a progressive cognitive decline. Addressing neuroinflammation represents a promising therapeutic avenue to treat AD; however, the development of effective antineuroinflammatory compounds is often hindered by their limited blood-brain barrier (BBB) permeability. Consequently, there is an urgent need for accurate, preclinical AD patient-specific BBB models to facilitate the early identification of immunomodulatory drugs capable of efficiently crossing the human AD BBB. This study presents a unique approach to BBB drug permeability screening as it utilizes the familial AD patient-derived induced brain endothelial-like cell (iBEC)-based model, which exhibits increased disease relevance and serves as an improved BBB drug permeability assessment tool when compared to traditionally employed in vitro models. To demonstrate its utility as a small molecule drug candidate screening platform, we investigated the effects of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(atsm)) and a library of metal bis(thiosemicarbazone) complexes─a class of compounds exhibiting antineuroinflammatory therapeutic potential in neurodegenerative disorders. By evaluating the toxicity, cellular accumulation, and permeability of those compounds in the AD patient-derived iBEC, we have identified 3,4-hexanedione bis(N(4)-methylthiosemicarbazonato)copper(II) (CuII(dtsm)) as a candidate with good transport across the AD BBB. Furthermore, we have developed a multiplex approach where AD patient-derived iBEC were combined with immune modulators TNFα and IFNγ to establish an in vitro model representing the characteristic neuroinflammatory phenotype at the patient's BBB. Here, we observed that treatment with CuII(dtsm) not only reduced the expression of proinflammatory cytokine genes but also reversed the detrimental effects of TNFα and IFNγ on the integrity and function of the AD iBEC monolayer. This suggests a novel pathway through which copper bis(thiosemicarbazone) complexes may exert neurotherapeutic effects on AD by mitigating BBB neuroinflammation and related BBB integrity impairment. Together, the presented model provides an effective and easily scalable in vitro BBB platform for screening AD drug candidates. Its improved translational potential makes it a valuable tool for advancing the development of metal-based compounds aimed at modulating neuroinflammation in AD.


Asunto(s)
Enfermedad de Alzheimer , Tiosemicarbazonas , Humanos , Barrera Hematoencefálica/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cobre/metabolismo , Enfermedades Neuroinflamatorias , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/metabolismo , Tiosemicarbazonas/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
9.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771543

RESUMEN

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Asunto(s)
Apolipoproteína E3 , Apolipoproteína E4 , Astrocitos , Barrera Hematoencefálica , Citocinas , Glicoproteína de la Espiga del Coronavirus , Barrera Hematoencefálica/metabolismo , Humanos , Citocinas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Astrocitos/virología , Astrocitos/efectos de los fármacos , Apolipoproteína E3/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/inmunología , Células Cultivadas
10.
Adv Drug Deliv Rev ; 189: 114517, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030018

RESUMEN

Low-intensity ultrasound combined with intravenously injected microbubbles (US+MB) is a novel treatment modality for brain disorders, including Alzheimer's disease (AD), safely and transiently allowing therapeutic agents to overcome the blood-brain barrier (BBB) that constitutes a major barrier for therapeutic agents. Here, we first provide an update on immunotherapies in AD and how US+MB has been applied to AD mouse models and in clinical trials, considering the ultrasound and microbubble parameter space. In the second half of the review, we compare different in vitro BBB models and discuss strategies for combining US+MB with BBB modulators (targeting molecules such as claudin-5), and highlight the insight provided by super-resolution microscopy. Finally, we conclude with a short discussion on how in vitro findings can inform the design of animal studies, and how the insight gained may aid treatment optimization in the clinical ultrasound space.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Productos Biológicos/uso terapéutico , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo , Claudina-5 , Ratones , Microburbujas , Ultrasonografía
11.
Biochimie ; 198: 60-75, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35183674

RESUMEN

Heparan sulfate proteoglycans (HSPGs) participate in numerous normal and pathophysiological cellular functions. HSPGs are crucial components of the extracellular matrix (ECM) binding signalling molecules such as fibroblast growth factors (FGF) and Wnts to mediate various cellular processes including cell proliferation, migration, and cancer invasion. The syndecans (SDCs1-4) are a major family of four HSPGs, implicated in the development of breast carcinomas. This study examined syndecan-1 (SDC1) and syndecan-4 (SDC4; SDC1/4) in breast cancer (BC) in vitro cell models and their role in tumorigenesis. Gene expression of HSPG core proteins, biosynthesis and modification enzymes along with Wnt/FGF morphogen pathway components were examined following inhibition of SDC1 and SDC4 via small interfering RNA (siRNA), and enhancement of HSPGs via addition of heparin and FGF. siRNAs knockdowns (KDs) were performed in the MCF-7 (lowly invasive and poorly metastatic) and the MDA-MB-231 (highly invasive and metastatic) human BC cell lines. Significantly decreased gene expression of SDC1 and SDC4 was observed in both cell lines following KD. Additionally, via gene expression analysis, downregulation of SDC1/4 decreased the biosynthesis of heparan sulfate modification enzymes and reduced expression of Wnt signalling molecules. Following the enhancement/inhibition of HSPGs via heparin/siRNA treatment, heparin increased the migratory characteristics of MCF-7 cells while KD of SDC1 increased cell migration in both MCF-7 and MDA-MB-231 cells when compared to scramble negative control conditions. Our findings suggest that a niche-specific function exists for SDC1/4 in the BC microenvironment, mediating Wnt signalling cascades and potentially regulating migration of BC cells.


Asunto(s)
Neoplasias de la Mama , Sindecano-1 , Neoplasias de la Mama/metabolismo , Movimiento Celular , Femenino , Heparina , Humanos , ARN Interferente Pequeño/genética , Sindecano-1/genética , Sindecano-4 , Microambiente Tumoral , Vía de Señalización Wnt
12.
Theranostics ; 12(16): 6826-6847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276649

RESUMEN

Rationale: The blood-brain barrier (BBB) is a major impediment to therapeutic intracranial drug delivery for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). Focused ultrasound applied together with microbubbles (FUS+MB) is a novel technique to transiently open the BBB and increase drug delivery. Evidence suggests that FUS+MB is safe, however, the effects of FUS+MB on human BBB cells, especially in the context of AD, remain sparsely investigated. In addition, there currently are no cell platforms to test for FUS+MB-mediated drug delivery. Methods: Here we generated BBB cells (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) from apolipoprotein E gene allele E4 (APOE4, high sporadic AD risk) and allele E3 (APOE3, lower AD risk) carrying patient-derived induced pluripotent stem cells (iPSCs). We established mono- and co-culture models of human sporadic AD and control BBB cells to investigate the effects of FUS+MB on BBB cell phenotype and to screen for the delivery of two potentially therapeutic AD antibodies, an Aducanumab-analogue (AduhelmTM; anti-amyloid-ß) and a novel anti-Tau antibody, RNF5. We then developed a novel hydrogel-based 2.5D BBB model as a step towards a more physiologically relevant FUS+MB drug delivery platform. Results: When compared to untreated cells, the delivery of Aducanumab-analogue and RNF5 was significantly increased (up to 1.73 fold), across the Transwell-based BBB models following FUS+MB treatment. Our results also demonstrated the safety of FUS+MB indicated by minimal changes in iBEC transcriptome as well as little or no changes in iBEC or iAstrocyte viability and inflammatory responses within the first 24 h post FUS+MB. Furthermore, we demonstrated successful iBEC barrier formation in our novel 2.5D hydrogel-based BBB model with significantly increased delivery (1.4 fold) of Aducanumab-analogue following FUS+MB. Conclusion: Our results demonstrate a robust and reproducible approach to utilize patient cells for FUS+MB-mediated drug delivery screening in vitro. With such a cell platform for FUS+MB research previously not reported, it has the potential to identify novel FUS+MB-deliverable drugs as well as screen for cell- and patient-specific effects of FUS+MB, accelerating the use of FUS+MB as a therapeutic modality in AD.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos Monoclonales Humanizados , Barrera Hematoencefálica , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Encéfalo/fisiología , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles , Microburbujas , Anticuerpos Monoclonales Humanizados/administración & dosificación
13.
Cells ; 11(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291125

RESUMEN

An early symptom of Alzheimer's disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Expresión Génica , Mucosa Olfatoria , Células Madre , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Células Madre/metabolismo , Células Madre/patología , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Células Cultivadas
14.
Stem Cell Reports ; 14(5): 924-939, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32275861

RESUMEN

The blood-brain barrier (BBB) presents a barrier for circulating factors, but simultaneously challenges drug delivery. How the BBB is altered in Alzheimer disease (AD) is not fully understood. To facilitate this analysis, we derived brain endothelial cells (iBECs) from human induced pluripotent stem cells (hiPSCs) of several patients carrying the familial AD PSEN1 mutation. We demonstrate that, compared with isogenic PSEN1 corrected and control iBECs, AD-iBECs exhibit altered tight and adherens junction protein expression as well as efflux properties. Furthermore, by applying focused ultrasound (FUS) that transiently opens the BBB and achieves multiple therapeutic effects in AD mouse models, we found an altered permeability to 3-5 kDa dextran as a model cargo and the amyloid-ß (Aß) peptide in AD-iBECs compared with control iBECs. This presents human-derived in vitro models of the BBB as a valuable tool to understand its role and properties in a disease context, with possible implications for drug delivery.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Células Endoteliales/metabolismo , Enfermedad de Alzheimer/terapia , Animales , Barrera Hematoencefálica/citología , Línea Celular , Células Cultivadas , Conexinas/metabolismo , Dextranos/farmacocinética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Fenotipo , Presenilina-1/genética , Terapia por Ultrasonido
15.
Front Mol Neurosci ; 11: 134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740281

RESUMEN

Background: Due to their relative ease of isolation and their high ex vivo and in vitro expansive potential, human mesenchymal stem cells (hMSCs) are an attractive candidate for therapeutic applications in the treatment of brain injury and neurological diseases. Heparan sulfate proteoglycans (HSPGs) are a family of ubiquitous proteins involved in a number of vital cellular processes including proliferation and stem cell lineage differentiation. Methods: Following the determination that hMSCs maintain neural potential throughout extended in vitro expansion, we examined the role of HSPGs in mediating the neural potential of hMSCs. hMSCs cultured in basal conditions (undifferentiated monolayer cultures) were found to co-express neural markers and HSPGs throughout expansion with modulation of the in vitro niche through the addition of exogenous HS influencing cellular HSPG and neural marker expression. Results: Conversion of hMSCs into hMSC Induced Neurospheres (hMSC IN) identified distinctly localized HSPG staining within the spheres along with altered gene expression of HSPG core protein and biosynthetic enzymes when compared to undifferentiated hMSCs. Conclusion: Comparison of markers of pluripotency, neural self-renewal and neural lineage specification between hMSC IN, hMSC and human neural stem cell (hNSC H9) cultures suggest that in vitro generated hMSC IN may represent an intermediary neurogenic cell type, similar to a common neural progenitor cell. In addition, this data demonstrates HSPGs and their biosynthesis machinery, are associated with hMSC IN formation. The identification of specific HSPGs driving hMSC lineage-specification will likely provide new markers to allow better use of hMSCs in therapeutic applications and improve our understanding of human neurogenesis.

16.
Front Neurosci ; 12: 668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319344

RESUMEN

Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.

17.
Data Brief ; 7: 206-15, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26958640

RESUMEN

Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1].

18.
Stem Cell Res ; 16(1): 92-104, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26722758

RESUMEN

Multipotent neural stem cells (NSCs) provide a model to investigate neurogenesis and develop mechanisms of cell transplantation. In order to define improved markers of stemness and lineage specificity, we examined self-renewal and multi-lineage markers during long-term expansion and under neuronal and astrocyte differentiating conditions in human ESC-derived NSCs (hNSC H9 cells). In addition, with proteoglycans ubiquitous to the neural niche, we also examined heparan sulfate proteoglycans (HSPGs) and their regulatory enzymes. Our results demonstrate that hNSC H9 cells maintain self-renewal and multipotent capacity during extended culture and express HS biosynthesis enzymes and several HSPG core protein syndecans (SDCs) and glypicans (GPCs) at a high level. In addition, hNSC H9 cells exhibit high neuronal and a restricted glial differentiative potential with lineage differentiation significantly increasing expression of many HS biosynthesis enzymes. Furthermore, neuronal differentiation of the cells upregulated SDC4, GPC1, GPC2, GPC3 and GPC6 expression with increased GPC4 expression observed under astrocyte culture conditions. Finally, downregulation of selected HSPG core proteins altered hNSC H9 cell lineage potential. These findings demonstrate an involvement for HSPGs in mediating hNSC maintenance and lineage commitment and their potential use as novel markers of hNSC and neural cell lineage specification.


Asunto(s)
Linaje de la Célula , Membrana Celular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Células-Madre Neurales/citología , Astrocitos/citología , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Proliferación Celular , Autorrenovación de las Células , Heparitina Sulfato/biosíntesis , Humanos , Células-Madre Neurales/metabolismo , Neuronas/citología , Oligodendroglía/citología
19.
PLoS One ; 10(9): e0137255, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26356539

RESUMEN

The suitability of human mesenchymal stem cells (hMSCs) in regenerative medicine relies on retention of their proliferative expansion potential in conjunction with the ability to differentiate toward multiple lineages. Successful utilisation of these cells in clinical applications linked to tissue regeneration requires consideration of biomarker expression, time in culture and donor age, as well as their ability to differentiate towards mesenchymal (bone, cartilage, fat) or non-mesenchymal (e.g., neural) lineages. To identify potential therapeutic suitability we examined hMSCs after extended expansion including morphological changes, potency (stemness) and multilineage potential. Commercially available hMSC populations were expanded in vitro for > 20 passages, equating to > 60 days and > 50 population doublings. Distinct growth phases (A-C) were observed during serial passaging and cells were characterised for stemness and lineage markers at representative stages (Phase A: P+5, approximately 13 days in culture; Phase B: P+7, approximately 20 days in culture; and Phase C: P+13, approximately 43 days in culture). Cell surface markers, stem cell markers and lineage-specific markers were characterised by FACS, ICC and Q-PCR revealing MSCs maintained their multilineage potential, including neural lineages throughout expansion. Co-expression of multiple lineage markers along with continued CD45 expression in MSCs did not affect completion of osteogenic and adipogenic specification or the formation of neurospheres. Improved standardised isolation and characterisation of MSCs may facilitate the identification of biomarkers to improve therapeutic efficacy to ensure increased reproducibility and routine production of MSCs for therapeutic applications including neural repair.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Madre Mesenquimatosas/citología , Adipogénesis , Western Blotting , Membrana Celular/metabolismo , Proliferación Celular , Forma de la Célula , Células Cultivadas , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Antígenos Comunes de Leucocito/metabolismo , Neuronas/citología , Osteogénesis , Esferoides Celulares/citología , Factores de Transcripción/metabolismo
20.
Gene ; 512(2): 527-31, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23051989

RESUMEN

Migraine is a common neurological disease with a genetic basis affecting approximately 12% of the population. Pain during a migraine attack is associated with activation of the trigeminal nerve system, which carries pain signals from the meninges and the blood vessels infusing the meninges to the trigeminal nucleus in the brain stem. The release of inflammatory mediators following cortical spreading depression (CSD) may further promote and sustain the activation and sensitization of meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine. Lymphotoxin α (LTA) is a cytokine secreted by lymphocytes and is a member of the tumour necrosis factor (TNF) family. Genetic variation with the TNF and LTA genes may contribute to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Three LTA variants rs2009658, rs2844482 and rs2229094 were identified in a recent pGWAS study conducted in the Norfolk Island population as being potentially implicated in migraine with nominally significant p values of p=0.0093, p=0.0088 and p=0.033 respectively. To determine whether these SNPs played a role in migraine in a general outbred population these SNPs were gentoyped in a large case control Australian Caucasian population and tested for association with migraine. All three SNPs showed no association in our cohort (p>0.05). Validation of GWAS data in independent case-controls cohorts is essential to establish risk validity within specific population groups. The importance of cytokines in modulating neural inflammation and pain threshold in addition to other studies showing associations between TNF-α and SNPs in the LTA gene with migraine, suggests that LTA could be an important factor contributing to migraine. Although the present study did not support a role for the tested LTA variants in migraine, investigation of other variants within the LTA gene is still warranted.


Asunto(s)
Linfotoxina-alfa/genética , Trastornos Migrañosos/genética , Polimorfismo de Nucleótido Simple , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Linfotoxina-alfa/metabolismo , Masculino , Melanesia , Trastornos Migrañosos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA