Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(26): 14779-14789, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32561645

RESUMEN

Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.


Asunto(s)
Recuento de Células Sanguíneas/métodos , Microscopía Ultravioleta/métodos , Imagen Molecular/métodos , Recuento de Células Sanguíneas/instrumentación , Células Sanguíneas/clasificación , Células Sanguíneas/citología , Diseño de Equipo , Humanos , Microscopía Ultravioleta/instrumentación , Imagen Molecular/instrumentación , Sistemas de Atención de Punto
2.
Opt Lett ; 47(22): 6005-6008, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219158

RESUMEN

Neutropenia is a condition comprising an abnormally low number of neutrophils, a type of white blood cell, which puts patients at an increased risk of severe infections. Neutropenia is especially common among cancer patients and can disrupt their treatment or even be life-threatening in severe cases. Therefore, routine monitoring of neutrophil counts is crucial. However, the current standard of care to assess neutropenia, the complete blood count (CBC), is resource-intensive, time-consuming, and expensive, thereby limiting easy or timely access to critical hematological information such as neutrophil counts. Here, we present a simple technique for fast, label-free neutropenia detection and grading via deep-ultraviolet (deep-UV) microscopy of blood cells in polydimethylsiloxane (PDMS)-based passive microfluidic devices. The devices can potentially be manufactured in large quantities at a low cost, requiring only 1 µL of whole blood for operation. We show that the absolute neutrophil counts (ANC) obtained from our proposed microfluidic device-enabled deep-UV microscopy system are highly correlated with those from CBCs using commercial hematology analyzers in patients with moderate and severe neutropenia, as well as healthy donors. This work lays the foundation for the development of a compact, easy-to-use UV microscope system to track neutrophil counts that is suitable for low-resource, at-home, or point-of-care settings.


Asunto(s)
Neoplasias , Neutropenia , Humanos , Microscopía , Neutropenia/diagnóstico , Recuento de Leucocitos , Neutrófilos
3.
Opt Lett ; 45(10): 2708-2711, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32412447

RESUMEN

Ultraviolet (UV) microscopy has recently re-emerged as an important label-free, molecular imaging technique. This stems from the unique UV absorption properties of many endogenous biomolecules that play a critical role in cell structure and function. However, broadband hyperspectral imaging in this spectral region is challenging due to strong chromatic aberrations inherent in UV systems. Here we apply an intensity-based, two-stage, iterative phase-recovery algorithm that leverages the same chromatic aberrations to overcome this challenge. Importantly, knowledge of samples' dispersion or absorption properties is not required. We demonstrate that the computationally retrieved phase can be applied to digitally refocus images across a large bandwidth. This enables hyperspectral UV imaging with a simple microscope for quantitative molecular analysis. We validate this method through simulations and through experiments with red blood cells.

4.
BME Front ; 2022: 9853606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37850166

RESUMEN

Objective and Impact Statement. We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. Introduction. Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. Methods. We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. Results. Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. Conclusion. This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.

5.
Sci Rep ; 12(1): 9329, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35665770

RESUMEN

Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains a significant clinical challenge. Here we develop an approach based on multispectral deep-ultraviolet (UV) microscopy that provides novel quantitative insight into the aggressiveness and grade of this disease, thus providing a new tool to help address this important challenge. We find that UV spectral signatures from endogenous molecules give rise to a phenotypical continuum that provides unique structural insight (i.e., molecular maps or "optical stains") of thin tissue sections with subcellular (nanoscale) resolution. We show that this phenotypical continuum can also be applied as a surrogate biomarker of prostate cancer malignancy, where patients with the most aggressive tumors show a ubiquitous glandular phenotypical shift. In addition to providing several novel "optical stains" with contrast for disease, we also adapt a two-part Cycle-consistent Generative Adversarial Network to translate the label-free deep-UV images into virtual hematoxylin and eosin (H&E) stained images, thus providing multiple stains (including the gold-standard H&E) from the same unlabeled specimen. Agreement between the virtual H&E images and the H&E-stained tissue sections is evaluated by a panel of pathologists who find that the two modalities are in excellent agreement. This work has significant implications towards improving our ability to objectively quantify prostate cancer grade and aggressiveness, thus improving the management and clinical outcomes of prostate cancer patients. This same approach can also be applied broadly in other tumor types to achieve low-cost, stain-free, quantitative histopathological analysis.


Asunto(s)
Colorantes , Neoplasias de la Próstata , Humanos , Masculino , Microscopía , Fenotipo , Neoplasias de la Próstata/diagnóstico por imagen , Coloración y Etiquetado
6.
J Biomed Opt ; 26(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34378368

RESUMEN

SIGNIFICANCE: The morphological properties and hemoglobin (Hb) content of red blood cells (RBCs) are essential biomarkers to diagnose or monitor various types of hematological disorders. Label-free mass mapping approaches enable accurate Hb quantification from individual cells, serving as promising alternatives to conventional hematology analyzers. Deep ultraviolet (UV) microscopy is one such technique that allows high-resolution, molecular imaging, and absorption-based mass mapping. AIM: To compare UV absorption-based mass mapping at four UV wavelengths and understand variations across wavelengths and any assumptions necessary for accurate Hb quantification. APPROACH: Whole blood smears are imaged with a multispectral UV microscopy system, and the RBCs' dry masses are computed. This approach is compared to quantitative phase imaging-based mass mapping using data from an interferometric UV imaging system. RESULTS: Consistent Hb mass and mean corpuscular Hb values are obtained at all wavelengths, with the precision of the single-cell mass measurements being nearly identical at 220, 260, and 280 nm but slightly lower at 300 nm. CONCLUSIONS: A full hematological analysis (including white blood cell identification and characterization, and Hb quantification) may be achieved using a single UV illumination wavelength, thereby improving the speed and cost-effectiveness.


Asunto(s)
Eritrocitos , Hemoglobinas , Recuento de Eritrocitos , Eritrocitos/química , Hemoglobinas/análisis , Microscopía Ultravioleta , Imagen Molecular
7.
Biomed Opt Express ; 12(10): 6115-6128, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34745725

RESUMEN

Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving.

8.
Biomed Opt Express ; 10(2): 487-499, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800494

RESUMEN

Owing to the high precision and sensitivity of optical systems, there is an increasing demand for optical methods that quantitatively characterize the physical and chemical properties of biological samples. Information extracted from such quantitative methods, through phase and/or amplitude variations of light, can be crucial in the diagnosis, treatment and study of disease. In this work we apply a recently developed quantitative method, called ultraviolet hyperspectral interferometry (UHI), to characterize the dispersion and absorbing properties of various important biomolecules. Our system consists of (1) a broadband light source that spans from the deep-UV to the visible region of the spectrum, and (2) a Mach-Zehnder interferometer to gain access to complex optical properties. We apply this method to characterize (and tabulate) the dispersive and absorptive properties of hemoglobin, beta nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD), elastin, collagen, cytochrome c, tryptophan and DNA. Our results shed new light on the complex properties of important biomolecules.

9.
Sci Rep ; 8(1): 9913, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967322

RESUMEN

Ultraviolet (UV) spectroscopy is a powerful tool for quantitative (bio)chemical analysis, but its application to molecular imaging and microscopy has been limited. Here we introduce ultraviolet hyperspectral interferometric (UHI) microscopy, which leverages coherent detection of optical fields to overcome significant challenges associated with UV spectroscopy when applied to molecular imaging. We demonstrate that this method enables quantitative spectral analysis of important endogenous biomolecules with subcellular spatial resolution and sensitivity to nanometer-scaled structures for label-free molecular imaging of live cells.

10.
J Biomed Opt ; 21(9): 96003, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27604562

RESUMEN

Early detection of the most prevalent oral disease worldwide, i.e., dental caries, still remains as one of the major challenges in dentistry. The current dental standard of care relies on caries detection methods, such as visual inspection and x-ray radiography, which lack the sufficient specificity and sensitivity to detect caries at early stages of formation when they can be healed. We report on the feasibility of early caries detection in a clinically and commercially viable thermophotonic imaging system. The system incorporates intensity-modulated laser light along with a low-cost long-wavelength infrared (LWIR; 8 to 14???m) camera, providing diagnostic contrast based on the enhanced light absorption of early caries. The LWIR camera is highly suitable for integration into clinical platforms because of its low weight and cost. In addition, through theoretical modeling, we show that LWIR detection enhances the diagnostic contrast due to the minimal LWIR transmittance of enamel and suppression of the masking effect of the direct thermal Planck emission. Diagnostic performance of the system and its detection threshold are experimentally evaluated by monitoring the inception and progression of artificially induced occlusal and smooth surface caries. The results are suggestive of the suitability of the developed LWIR system for detecting early dental caries.


Asunto(s)
Caries Dental/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Espectrofotometría Infrarroja/métodos , Desmineralización Dental/diagnóstico por imagen , Algoritmos , Caries Dental/patología , Diagnóstico Precoz , Diseño de Equipo , Estudios de Factibilidad , Humanos , Modelos Biológicos , Diente Molar/diagnóstico por imagen , Diente Molar/patología , Procesamiento de Señales Asistido por Computador , Desmineralización Dental/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA