Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 41(22): 4795-4808, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33906900

RESUMEN

Coordination of skilled movements and motor planning relies on the formation of regionally restricted brain circuits that connect cortex with subcortical areas during embryonic development. Layer 5 neurons that are distributed across most cortical areas innervate the pontine nuclei (basilar pons) by protrusion and extension of collateral branches interstitially along their corticospinal extending axons. Pons-derived chemotropic cues are known to attract extending axons, but molecules that regulate collateral extension to create regionally segregated targeting patterns have not been identified. Here, we discovered that EphA7 and EfnA5 are expressed in the cortex and the basilar pons in a region-specific and mutually exclusive manner, and that their repulsive activities are essential for segregating collateral extensions from corticospinal axonal tracts in mice. Specifically, EphA7 and EfnA5 forward and reverse inhibitory signals direct collateral extension such that EphA7-positive frontal and occipital cortical areas extend their axon collaterals into the EfnA5-negative rostral part of the basilar pons, whereas EfnA5-positive parietal cortical areas extend their collaterals into the EphA7-negative caudal part of the basilar pons. Together, our results provide a molecular basis that explains how the corticopontine projection connects multimodal cortical outputs to their subcortical targets.SIGNIFICANCE STATEMENT Our findings put forward a model in which region-to-region connections between cortex and subcortical areas are shaped by mutually exclusive molecules to ensure the fidelity of regionally restricted circuitry. This model is distinct from earlier work showing that neuronal circuits within individual cortical modalities form in a topographical manner controlled by a gradient of axon guidance molecules. The principle that a shared molecular program of mutually repulsive signaling instructs regional organization-both within each brain region and between connected brain regions-may well be applicable to other contexts in which information is sorted by converging and diverging neuronal circuits.


Asunto(s)
Orientación del Axón/fisiología , Efrina-A5/metabolismo , Neocórtex/embriología , Vías Nerviosas/embriología , Puente/embriología , Receptor EphA7/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Vías Nerviosas/metabolismo , Puente/patología
2.
Muscle Nerve ; 65(5): 612-620, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35119696

RESUMEN

INTRODUCTION/AIMS: Motor function recovery is frequently poor after peripheral nerve injury. The effect of different numbers of nerve crushes and exercise on motor function recovery is unknown. We aimed to examine how different numbers of crushes of the rat sciatic nerve affects muscle reinnervation and plasticity of spinal circuits and the effect of exercise intervention. METHODS: Single and multiple sciatic nerve crush models with different numbers of crushes were created in rats. Treadmill exercise was performed at 10 m/min for 60 min, five times a week. Muscle reinnervation and synaptic changes in L4-5 motor neurons were examined by immunofluorescence staining. Behavioral tests were the sciatic functional index (SFI) and the pinprick tests. RESULTS: The percentage of soleus muscle reinnervation was not significantly increased by the presence of exercise in single or multiple crushes. Exercise after a single crush increased the contact of motor neurons with VGLUT1-containing structures (Exercised vs. Unexercised, 12.9% vs. 8.7%; p < .01), but after multiple crushes, it decreased with or without exercise (8.1% vs. 8.6%). Exercise after a single crush significantly improved SFI values from 14 to 24 days, and exercise after multiple crushes from 21 to 35 days (all p < .05). The pinprick test showed no difference in recovery depending on the number of crushes or whether or not exercised. DISCUSSION: Different numbers of sciatic nerve crushes affect muscle reinnervation and motor neuron synaptic changes differently, but motor function recovery may improve with exercise regardless of the number of crushes.


Asunto(s)
Lesiones por Aplastamiento , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Animales , Músculo Esquelético/inervación , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Ratas , Recuperación de la Función/fisiología , Nervio Ciático/lesiones
3.
Connect Tissue Res ; 63(2): 138-150, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33588658

RESUMEN

AIM: The healing ability of the anterior cruciate ligament (ACL) injury is very poor; however, it has recently been shown to undergo self-healing with conservative treatments. In this study, we evaluated the influence of the site of injury on the healing process after complete transverse tear of ACL using a rat model. MATERIALS AND METHODS: A total of 58 skeletally mature Wistar rats were randomly assigned to various ACL injury groups: controlled abnormal movement-mid-portion (CAM-MP), controlled abnormal movement-femoral side (CAM-FS), ACL transection-mid-portion (ACLT-MP), or ACL transection-femoral side (ACLT-FS) injury groups. The ACL was completely transected in the mid-portion in the ACLT-MP and CAM-MP groups, and on the femoral side in the ACLT-FS and CAM-FS groups. Both CAM groups underwent extra-articular braking to control for abnormal tibial translation. The animals were allowed full cage activity until sacrifice postoperatively for histological and biomechanical assessment. RESULTS: Significant differences were found in the ratios of residual ligament lengths between the CAM-MP and CAM-FS groups, demonstrating the validity of each model. Spontaneous healing of the injured ACL was observed in the CAM-MP and CAM-FS groups but not in the ACLT-MP and ACLT-FS groups. The mechanical strength of the healing ACL did not differ between the CAM-MP and CAM-FS groups 8 weeks after injury; however, the former had better mechanical strength than the latter 12 weeks after the injury. CONCLUSION: ACL injuries in the mid-portion and on the femoral side may be treated with conservative therapy for spontaneous healing.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Discinesias , Animales , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/patología , Discinesias/patología , Articulación de la Rodilla/patología , Ratas , Ratas Wistar , Rotura/patología , Rotura/cirugía
4.
Cereb Cortex ; 31(11): 5225-5238, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34228058

RESUMEN

Association projections from cortical pyramidal neurons connect disparate intrahemispheric cortical areas, which are implicated in higher cortical functions. The underlying developmental processes of these association projections, especially the initial phase before reaching the target areas, remain unknown. To visualize developing axons of individual neurons with association projections in the mouse neocortex, we devised a sparse labeling method that combined in utero electroporation and confocal imaging of flattened and optically cleared cortices. Using the promoter of an established callosal neuron marker gene that was expressed in over 80% of L2/3 neurons in the primary somatosensory cortex (S1) that project to the primary motor cortex (M1), we found that an association projection of a single neuron was the longest among the interstitial collaterals that branched out in L5 from the earlier-extended callosal projection. Collaterals to M1 elongated primarily within the cortical gray matter with little branching before reaching the target. Our results suggest that dual-projection neurons in S1 make a significant fraction of the association projections to M1, supporting the directed guidance mechanism in long-range corticocortical circuit formation over random projections followed by specific pruning.


Asunto(s)
Corteza Motora , Animales , Axones/fisiología , Ratones , Corteza Motora/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas/fisiología , Corteza Somatosensorial
5.
J Neurochem ; 159(4): 778-788, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34490902

RESUMEN

Corticosteroids are stress-related hormones that maintain homeostasis. The most effective corticosteroids are corticosterone (CORT) in rodents and cortisol in primates. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1; EC 1.1.1.146), encoded by Hsd11b1, is a key regulator of the local concentration of CORT/cortisol. Hsd11b1 expression in layer 5 of the primary somatosensory cortex has been shown in adult mice. However, its localization in the entire neocortex, especially during development, has not been fully addressed. Here, we established robust and dynamic expression profiles of Hsd11b1 in the developing mouse neocortex. Hsd11b1 was found mostly in pyramidal neurons. By retrograde tracing, we observed that some Hsd11b1-positive cells were projection neurons, indicating that at least some were excitatory. At postnatal day 0 (P0), Hsd11b1 was expressed in the deep layer of the somatosensory cortex. Then, from P3 to P8, the expression area expanded broadly; it was observed in layers 4 and 5, spanning the whole neocortex, including the primary motor cortex (M1) and the primary visual cortex (V1). The positive region gradually narrowed from P14 onwards and was ultimately limited to layer 5 of the somatosensory cortex at P26 and later. Furthermore, we administered CORT to nursing dams to increase the systemic CORT level of their pups. Here, we observed a reduced number of Hsd11b1-positive cells in the neocortex of these pups. Our observation suggests that Hsd11b1 expression in the developing neocortex is affected by systemic CORT levels. It is possible that stress on mothers influences the neocortical development of their children.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Neocórtex/metabolismo , Animales , Corticosterona/farmacología , Desnervación , Femenino , Expresión Génica , Ratones , Ratones Endogámicos ICR , Corteza Motora/crecimiento & desarrollo , Corteza Motora/metabolismo , Neocórtex/crecimiento & desarrollo , Neuronas/metabolismo , Embarazo , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Vibrisas/inervación , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo
6.
Hum Genet ; 140(2): 277-287, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32617796

RESUMEN

CRISPR-Cas9 are widely used for gene targeting in mice and rats. The non-homologous end-joining (NHEJ) repair pathway, which is dominant in zygotes, efficiently induces insertion or deletion (indel) mutations as gene knockouts at targeted sites, whereas gene knock-ins (KIs) via homology-directed repair (HDR) are difficult to generate. In this study, we used a double-stranded DNA (dsDNA) donor template with Cas9 and two single guide RNAs, one designed to cut the targeted genome sequences and the other to cut both the flanked genomic region and one homology arm of the dsDNA plasmid, which resulted in 20-33% KI efficiency among G0 pups. G0 KI mice carried NHEJ-dependent indel mutations at one targeting site that was designed at the intron region, and HDR-dependent precise KIs of the various donor cassettes spanning from 1 to 5 kbp, such as EGFP, mCherry, Cre, and genes of interest, at the other exon site. These findings indicate that this combinatorial method of NHEJ and HDR mediated by the CRISPR-Cas9 system facilitates the efficient and precise KIs of plasmid DNA cassettes in mice and rats.


Asunto(s)
Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Técnicas de Sustitución del Gen/métodos , Plásmidos/genética , Reparación del ADN por Recombinación/genética , Animales , ADN/genética , Exones/genética , Femenino , Edición Génica/métodos , Genoma/genética , Intrones/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Ratas , Ratas Long-Evans , Ratas Wistar
7.
BMC Genomics ; 19(1): 383, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792162

RESUMEN

BACKGROUND: The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. RESULTS: To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. CONCLUSION: Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.


Asunto(s)
Perfilación de la Expresión Génica , Receptores Odorantes/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Olfato/genética , Pez Cebra/fisiología
8.
Cereb Cortex ; 23(6): 1410-23, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22617848

RESUMEN

Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.


Asunto(s)
Movimiento Celular/genética , Conos de Crecimiento/fisiología , Proteínas de Homeodominio/metabolismo , Neuroglía/fisiología , Neuronas/citología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Edad , Animales , Cadherinas/metabolismo , Proliferación Celular , Células Cultivadas , Corteza Cerebral/citología , Chlorocebus aethiops , Sulfato de Dextran/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Inmunoprecipitación , Técnicas In Vitro , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/fisiología , Embarazo , Interferencia de ARN/fisiología , Transfección , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
9.
Neurosci Lett ; 836: 137879, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880353

RESUMEN

Peripheral nerves exhibit long-term residual motor dysfunction following injury. The length of the denervation period before nerve and muscle reconnection is an important factor in motor function recovery. We aimed to investigate whether repeated nerve crush injuries to the same site every 7 days would preserve the conditioning lesion (CL) response and to determine the number of nerve crush injuries required to create an experimental animal model that would prolong the denervation period while maintaining peripheral nerve continuity. Rats were grouped according to the number of sciatic nerve crushes. A significant decrease in the soleus muscle fiber cross-sectional area was observed with increased crushes. After a single crush, macrophage accumulation and macrophage chemotaxis factor CCL2 expression in dorsal root ganglia were markedly increased, which aligned with the gene expression of Ccl2 and its receptor Ccr2. Macrophage numbers, histological CCL2 expression, and Ccl2 and Ccr2 gene expression levels decreased, depending on the number of repeated crushes. Histological analysis and gene expression analysis in the group with four repeated crushes did not differ significantly when compared with uninjured animals. Our findings indicated that repeated nerve crushes at the same site every 7 days sustained innervation loss and caused a loss of the CL response. The experimental model did not require nerve stump suturing and is useful for exploring factors causing prolonged denervation-induced motor dysfunction. SIGNIFICANCE STATEMENT: This study elucidates the effects of repeated nerve crush injury to the same site on innervation and conditioning lesion responses and demonstrates the utility of an experimental animal model that recapitulates the persistent residual motor deficits owing to prolonged denervation without requiring nerve transection and transection suturing.

10.
Am J Sports Med ; 52(3): 739-749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279796

RESUMEN

BACKGROUND: Chronic ankle instability (CAI) is a clinical sequela that causes the recurrence of ankle sprain by inducing ankle sensorimotor dysfunction. Animal models of CAI have recently shown that ankle ligament injuries mimicking an ankle sprain result in chronic loss of ankle sensorimotor function. However, the underlying mechanisms determining the pathogenesis of CAI remain unclear. HYPOTHESIS: Ankle instability after an ankle sprain leads to the degeneration of the mechanoreceptors, resulting in ankle sensorimotor dysfunction and the development of CAI. STUDY DESIGN: Controlled laboratory study. METHODS: Four-week-old male Wistar rats (N = 30) were divided into 2 groups: (1) the ankle joint instability (AJI) group with ankle instability induced by transecting the calcaneofibular ligament (n = 15) and (2) the sham group (n = 15). Ankle instability was assessed using the anterior drawer test and the talar tilt test at 4, 6, and 8 weeks after the operation (n = 5, for each group at each time point), and ankle sensorimotor function was assessed using behavioral tests, including ladder walking and balance beam tests, every 2 weeks during the postoperative period. Morphology and number of mechanoreceptors in the intact anterior talofibular ligament (ATFL) were histologically analyzed by immunofluorescence staining targeting the neurofilament medium chain and S100 proteins at 4, 6, and 8 weeks postoperatively (n = 5 per group). Sensory neurons that form mechanoreceptors were histologically analyzed using immunofluorescence staining targeting the mechanosensitive ion channel PIEZO2 at 8 weeks postoperatively (n = 5). RESULTS: Ankle sensorimotor function decreased over time in the AJI group, exhibiting decreased ankle instability compared with the sham group (P = .045). The number of mechanoreceptors in the ATFL was reduced (P < .001) and PIEZO2 expression in the sensory neurons decreased (P = .008) at 8 weeks postoperatively. The number of mechanoreceptors was negatively correlated with ankle sensorimotor dysfunction (P < .001). CONCLUSION: The AJI model demonstrated degeneration of the mechanoreceptors in the ATFL and decreased mechanosensitivity of the sensory neurons, which may contribute to CAI. CLINICAL RELEVANCE: Ankle instability causes degeneration of mechanoreceptors and decreases the mechanosensitivity of sensory neurons involved in the development of CAI. This finding emphasizes the importance of controlling ankle instability after ankle sprains to prevent recurrence and the onset of CAI.


Asunto(s)
Traumatismos del Tobillo , Inestabilidad de la Articulación , Animales , Ratas , Masculino , Tobillo , Inestabilidad de la Articulación/cirugía , Ratas Wistar , Articulación del Tobillo/cirugía , Traumatismos del Tobillo/cirugía
11.
Nature ; 450(7169): 503-8, 2007 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17989651

RESUMEN

The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.


Asunto(s)
Aprendizaje/fisiología , Odorantes/análisis , Bulbo Olfatorio/metabolismo , Olfato/fisiología , Aldehídos/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Butiratos/farmacología , Perfilación de la Expresión Génica , Aprendizaje/efectos de los fármacos , Masculino , Ratones , Mutación/genética , Vías Nerviosas/efectos de los fármacos , Bulbo Olfatorio/citología , Bulbo Olfatorio/efectos de los fármacos , Receptores Odorantes/metabolismo , Olfato/efectos de los fármacos , Tiazoles/farmacología
12.
Biology (Basel) ; 12(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36979148

RESUMEN

To date, it remains unclear how overuse affects the tendons and entheses at different stages of maturation. Therefore, we evaluated histological and morphological changes in the tendons and entheses in adolescent (4-week-old) and adult mice (8-week-old) by performing flat-land and downhill running exercises. The mice were divided into the Sedentary, High Flat (flat-land high-speed running; concentric-contraction exercise), Low Down (downhill low-speed running; eccentric-contraction exercise), and High Down (downhill high-speed running; eccentric-contraction exercise) groups. Histological changes and inflammatory factor expressions were compared in the entheses and tendons after 4 weeks of exercise. Downhill, but not flat-land high-speed running, induced muscle-tendon complex hypertrophy in both adolescent and adult mice. Histological enthesis changes were induced in both groups during downhill running but were less pronounced in adult mice. Conversely, no significant cell aggregation or fiber orientation changes were observed in the tendon, but increased inflammatory factors were observed in both groups, with significantly higher expression in the tendons of adult mice. Downhill running induced histological and morphological enthesis changes and inflammatory factor increase in the tendons, regardless of running speed variations. These results may help elucidate the pathogenesis of enthesopathy and tendinopathy, which have different pathophysiologies despite having the same pathogenetic factors.

13.
Osteoarthr Cartil Open ; 5(2): 100359, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37180812

RESUMEN

Objective: We previously reported how treadmill exercise can suppress cartilage degeneration. Here, we examined the changes in macrophage dynamics in knee osteoarthritis (OA) during treadmill exercise and the effect of macrophage depletion. Design: OA mouse model, generated via anterior cruciate ligament transection (ACLT), was subjected to treadmill exercise of different intensities to investigate the effects on cartilage and synovium. In addition, clodronate liposomes, which deplete macrophages, were injected intra-articularly into the joint to examine the role of macrophages during treadmill exercise. Results: Cartilage degeneration was delayed by mild exercise, and concomitantly, an increase in anti-inflammatory factors in the synovium was observed, with a decrease in the M1 and increase in M2 macrophage ratio. On the contrary, high-intensity exercise led to the progress of cartilage degeneration and was associated with an increase in the M1 and a decrease in the M2 macrophage ratio. The clodronate liposome-induced reduction of synovial macrophages delayed cartilage degeneration. This phenotype was reversed by simultaneous treadmill exercise. Conclusions: Treadmill exercise, especially at high intensity, was detrimental to articular cartilage, whereas mild exercise reduced cartilage degeneration. Moreover, M2 macrophage response appeared necessary for the chondroprotective effect of treadmill exercise. This study indicates the importance of a more comprehensive analysis of the effects of treadmill exercise, not limited to the mechanical stress added directly to cartilage. Hence, our findings might help determine the type and intensity of prescribed exercise therapy for patients with knee OA.

14.
J Orthop Res ; 41(3): 511-523, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35716158

RESUMEN

Entheses, which are tendon-to-bone attachment sites in the musculoskeletal system, play important roles in optimizing the mechanical stress and force transmitted from the muscle to the bone. Sports-related enthesopathy shows pathological features, including hyperplasia of the fibrocartilage (FC) region in the enthesis. The amount of exercise and type of muscle contraction during movement is involved in the pathogenesis of sports-related enthesopathy; however, the details of this condition are unclear. Here we examined the molecular pathways involved in the morphological changes of the muscle-tendon-enthesis complex and enthesis FC region in the supraspinatus muscle enthesis of mice under different exercise conditions. Following intervention, morphological changes in the muscle-tendon-enthesis complex were initiated in the eccentric contraction-dominant exercise group at 2 weeks, with activation of the transforming growth factor-ß (TGFß) superfamily pathway predicted by proteome and ingenuity pathway analyses. Histological and molecular biological analyses confirmed the activation of the TGFß/bone morphogenetic protein (BMP)-Smad pathway. The concentric contraction-dominant exercise group showed no change in the morphology of the muscle-tendon-enthesis complex or activation of the TGFß/BMP-Smad pathway, despite overuse exercise. Statement of Clinical Significance: These results suggest that eccentric contraction-dominant exercise induces sports-related enthesopathy-like morphological changes in the early stages as well as molecular biological changes, mainly in the transforming growth factor-ß superfamily pathway in enthesis. Statement of Clinical Significance: These results suggest that eccentric contraction-dominant exercise induces sports-related enthesopathy-like morphological changes in the early stages as well as molecular biological changes, mainly in the transforming growth factor-ß superfamily pathway in enthesis.


Asunto(s)
Entesopatía , Condicionamiento Físico Animal , Proteínas de la Superfamilia TGF-beta , Animales , Ratones , Huesos/patología , Tendones/patología , Proteínas de la Superfamilia TGF-beta/metabolismo
15.
Exp Biol Med (Maywood) ; 248(20): 1895-1904, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38149772

RESUMEN

Anterior cruciate ligament (ACL) injuries have a very low healing capacity but have recently been shown to heal spontaneously with conservative treatment. This study examined the mechanism of spontaneous ACL healing by focusing on the intra-articular tissues of the knee joint. Skeletally mature Wistar rats (n = 70) were randomly assigned to two groups: the controlled abnormal movement (CAM) and anterior cruciate ligament transection (ACLT) groups. The ACL was completely transected at the mid-portion in both groups. Only the CAM group underwent extra-articular braking to control for abnormal tibial translation. The animals were allowed full cage activity until sacrifice for histological, and molecular biology analyses. The results showed that the behavior of the stump after ACL injury differed between models 12 h after injury. The femoral stump in the ACLT group retreated posteriorly and upwardly. Macrophage polarity analysis revealed that the stump immune response in the CAM group was more activated than that in the ACLT group 6 h after injury. Microarray analysis of the ACL parenchyma and infrapatellar fat pads suggested the involvement of nuclear factor kappa B (NF-κB) signaling. Real-time polymerase chain reaction (PCR) analysis showed that NF-κB gene expression in the infrapatellar fat pad was significantly increased in the CAM group than in the ACLT group. However, there was no difference in the gene expression levels in the ACL parenchyma between models. In conclusion, the healing response of the ACL was activated within 12 h of injury, resulting in differences in the healing response between the models. It has been suggested that infrapatellar fat pads are involved in the healing process and that angiogenesis and antiapoptotic effects through NF-κB signaling may contribute to this mechanism.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ratas , Animales , Lesiones del Ligamento Cruzado Anterior/metabolismo , Lesiones del Ligamento Cruzado Anterior/patología , Remisión Espontánea , FN-kappa B/metabolismo , Ratas Wistar , Articulación de la Rodilla/patología , Tejido Adiposo/patología
16.
Chem Senses ; 37(3): 219-27, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038944

RESUMEN

Both ciliated and microvillous olfactory sensory neuron populations express large families of olfactory receptor genes. However, individual neurons generally express only a single receptor gene according to the "one neuron-one receptor" rule. We report here that crypt neurons, the third type of olfactory neurons in fish species, use an even more restricted mode of expression. We recently identified a novel olfactory receptor family of 6 highly conserved G protein-coupled receptors, the v1r-like ora genes. We show now that a single member of this family, ora4 is expressed in nearly all crypt neurons, whereas the other 5 ora genes are not found in this cell type. Consistent with these findings, ora4 is never coexpressed with any of the remaining 5 ora genes. Furthermore, several lines of evidence indicate the absence of any other olfactory receptor families in crypt neurons. These results suggest that the vast majority of the crypt neuron population may select one and the same olfactory receptor gene, a "one cell type-one receptor" mode of expression. Such an expression pattern is familiar in the visual system, with rhodopsin as the sole light receptor of rod photoreceptor cells, but unexpected in the sense of smell.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Regulación de la Expresión Génica , Hibridación in Situ , Receptores Odorantes/genética , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética
17.
Proc Natl Acad Sci U S A ; 106(5): 1484-9, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164534

RESUMEN

All alpha-subunits of vertebrate heterotrimeric G proteins have been classified into 4 major classes, Gs, Gi, Gq, and G12, which possess orthologs already in sponges, one of the earliest animal phyla to evolve. Here we report the discovery of the fifth class of Galpha protein, Gv, ancient like the other 4 classes, with members already in sponges, and encoded by 1-2 gnav genes per species. Gv is conserved across the animal kingdom including vertebrates, arthropods, mollusks, and annelids, but has been lost in many lineages such as nematodes, fruit fly, jawless fish, and tetrapods, concordant with a birth-and-death mode of evolution. All Gv proteins contain 5 G-box motifs characteristic of GTP-binding proteins and the expected acylation consensus sites in the N-terminal region. Sixty amino acid residues are conserved only among Gv, suggesting that they may constitute interaction sites for Gv-specific partner molecules. Overall Gv homology is high, on average 70% amino acid identity among vertebrate family members. The d(N)/d(S) analysis of teleost gnav genes reveals evolution under stringent negative selection. Genomic structure of vertebrate gnav genes is well conserved and different from those of the other 4 classes. The predicted full ORF of zebrafish gnav1 was confirmed by isolation from cDNA. RT-PCR analysis showed broad expression of gnav1 in adult zebrafish and in situ hybridization demonstrated a more restricted expression in larval tissues including the developing inner ear. The discovery of this fifth class of Galpha proteins changes our understanding of G protein evolution.


Asunto(s)
Proteínas de Unión al GTP/clasificación , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Expresión Génica , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Brain Nerve ; 74(9): 1125-1133, 2022 Sep.
Artículo en Japonés | MEDLINE | ID: mdl-36065674

RESUMEN

Direct projections between functional areas within the ipsilateral hemisphere (association projections) play a key role in higher cognitive functions. Deficits in these circuits are correlated with various pathological conditions including developmental disorders. We investigated the development of association projections in the mouse neocortex using single-neuron resolution imaging and observed that these were formed as interstitial collaterals that originate as buds from callosal projections of the same neurons. In this review, we describe our findings with regard to the development of association projections, together with mechanisms underlying these processes and also future perspectives in the field.


Asunto(s)
Corteza Cerebral , Corteza Visual , Animales , Cuerpo Calloso , Ratones , Neuronas/fisiología , Corteza Visual/fisiología
19.
PLoS One ; 17(9): e0274170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36067159

RESUMEN

The fork cell and von Economo neuron, which are found in the insular cortex and/or the anterior cingulate cortex, are defined by their unique morphologies. Their shapes are not pyramidal; the fork cell has two primary apical dendrites and the von Economo neurons are spindle-shaped (bipolar). Presence of such neurons are reported only in the higher animals, especially in human and great ape, indicating that they are specific for most evolved species. Although it is likely that these neurons are involved in higher brain function, lack of results with experimental animals makes further investigation difficult. We here ask whether equivalent neurons exist in the mouse insular cortex. In human, Fezf2 has been reported to be highly expressed in these morphologically distinctive neurons and thus, we examined the detailed morphology of Fezf2-positive neurons in the mouse brain. Although von Economo-like neurons were not identified, Fezf2-positive fork cell-like neurons with two characteristic apical dendrites, were discovered. Examination with electron microscope indicated that these neurons did not embrace capillaries, rather they held another cell. We here term such neurons as holding neurons. We further observed several molecules, including neuromedin B (NMB) and gastrin releasing peptide (GRP) that are known to be localized in the fork cells and/or von Economo cells in human, were localized in the mouse insular cortex. Based on these observations, it is likely that an equivalent of the fork cell is present in the mouse.


Asunto(s)
Corteza Cerebral , Hominidae , Animales , Corteza Cerebral/fisiología , Giro del Cíngulo , Hominidae/anatomía & histología , Humanos , Corteza Insular , Ratones , Neuronas/fisiología
20.
Cartilage ; 13(1): 19476035211069239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073770

RESUMEN

OBJECTIVE: Joint instability and meniscal dysfunction contribute to the onset and progression of knee osteoarthritis (OA). In the destabilization of the medial meniscus (DMM) model, secondary OA occurs due to the rotational instability and increases compressive stress resulting from the meniscal dysfunction. We created a new controlled abnormal tibial rotation (CATR) model that reduces the rotational instability that occurs in the DMM model. So, we aimed to investigate whether rotational instability affects articular cartilage degeneration using the DMM and CATR models, as confirmed using histology and immunohistochemistry. DESIGN: Twelve-week-old male mice were randomized into 3 groups: DMM group, CATR group, and INTACT group (right knee of the DMM group). After 8 and 12 weeks, we performed the tibial rotational test, safranin-O/fast green staining, and immunohistochemical staining for tumor necrosis factor (TNF)-α and metalloproteinase (MMP)-13. RESULTS: The rotational instability in the DMM group was significantly higher than that of the other groups. And articular cartilage degeneration was higher in the DMM group than in the other groups. However, meniscal degeneration was observed in both DMM and CATR groups. The TNF-α and MMP-13 positive cell rates in the articular cartilage of the CATR group were lower than those in the DMM group. CONCLUSIONS: We found that the articular cartilage degeneration was delayed by controlling the rotational instability caused by meniscal dysfunction. These findings suggest that suppression of rotational instability in the knee joint may be an effective therapeutic measure for preventing OA progression.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Inestabilidad de la Articulación , Menisco , Osteoartritis de la Rodilla , Animales , Enfermedades de los Cartílagos/patología , Cartílago Articular/patología , Modelos Animales de Enfermedad , Masculino , Meniscos Tibiales , Ratones , Osteoartritis de la Rodilla/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA