Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Manage ; 73(4): 777-787, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38097676

RESUMEN

Understanding the regeneration and succession of belowground communities, particularly in forests, is vital for maintaining ecosystem health. Despite its importance, there is limited knowledge regarding how fungal communities change over time during ecosystem development, especially under different forest restoration strategies. In this study, we focused on two restoration methods used in northern Japan: monoculture planting and natural regeneration. We examined the responses of the fungal community to monoculture plantations (active tree planting) and naturally regenerated (passive regeneration) forests over a 50-year chronosequence, using natural forests as a reference. Based on DNA metabarcoding, we assessed the richness of fungal Operational Taxonomic Units (OTUs) and their dissimilarity. Our findings revealed that soil fungal richness remained stable after natural regeneration but declined in monoculture plantations, from 354 to 247 OTUs. While the compositional dissimilarity of fungal assemblages between monoculture plantations and natural forests remained consistent regardless of the time since tree planting, it significantly decreased after natural regeneration, suggesting recovery to a state close to the reference level. Notably, the composition of key functional fungal groups-saprotrophic and ectomycorrhizal- has increasingly mirrored that of natural forests over time following passive natural regeneration. In summary, our study suggests that monoculture plantations may not be effective for long-term ecosystem function and service recovery because of their limited support for soil fungal diversity. These results underscore the importance of natural regeneration in forest restoration and management strategies.


Asunto(s)
Ecosistema , Micobioma , Suelo , Bosques , Plantas/microbiología , Árboles , Microbiología del Suelo
2.
Sci Rep ; 14(1): 2842, 2024 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310149

RESUMEN

Ectomycorrhizal (ECM) fungi are functionally important in biogeochemical cycles in tropical ecosystems. Extracellular enzymatic activity of ECM on a ground-area basis is the product of two attributes; exploration capacity (ECM surface-area) and specific enzymatic activity. Here, we elucidated which attribute better explained the ECM enzymatic activity in response to different levels of soil phosphorus (P) and Nitrogen (N) availability in five Bornean tropical rainforests. We determined the surface area of ECM root tips as well as the enzymatic activities per ECM surface area for carbon (C), N and P degrading enzymes in each site. We evaluated the relationship of ECM enzyme activities with the resource availabilities of C (Above-ground net primary production; ANPP), N, and P of ECM by a generalized linear mixed model. The ECM enzymatic activities on a ground-area basis were more significantly determined by specific enzymatic activity than by the exploration capacity. Specific enzymatic activities were generally negatively affected by C (ANPP) and soil P availability. ECM fungi enhance the specific enzyme activity rather than the exploration capacity to maintain the capacity of nutrient acquisition. The less dependence of ECM fungi on the exploration capacity in these forests may be related to the limitation of C supply from host trees. We highlighted the adaptive mechanisms of ECM fungi on nutrient acquisition in tropical ecosystems through the response of enzymatic activity to nutrient availability across the elements.


Asunto(s)
Ecosistema , Micorrizas , Bosque Lluvioso , Suelo , Fósforo , Micorrizas/fisiología , Árboles/fisiología , Bosques , Nitrógeno , Microbiología del Suelo
3.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137034

RESUMEN

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Asunto(s)
Bosques , Calentamiento Global , Isópteros , Madera , Animales , Ciclo del Carbono , Temperatura , Clima Tropical , Madera/microbiología
4.
Nat Commun ; 11(1): 4547, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917880

RESUMEN

Biodiversity loss can alter ecosystem functioning; however, it remains unclear how it alters decomposition-a critical component of biogeochemical cycles in the biosphere. Here, we provide a global-scale meta-analysis to quantify how changes in the diversity of organic matter derived from plants (i.e. litter) affect rates of decomposition. We find that the after-life effects of diversity were significant, and of substantial magnitude, in forests, grasslands, and wetlands. Changes in plant diversity could alter decomposition rates by as much as climate change is projected to alter them. Specifically, diversifying plant litter from mono- to mixed-species increases decomposition rate by 34.7% in forests worldwide, which is comparable in magnitude to the 13.6-26.4% increase in decomposition rates that is projected to occur over the next 50 years in response to climate warming. Thus, biodiversity changes cannot be solely viewed as a response to human influence, such as climate change, but could also be a non-negligible driver of future changes in biogeochemical cycles and climate feedbacks on Earth.


Asunto(s)
Biodiversidad , Calentamiento Global , Compuestos Orgánicos/química , Plantas/química , Biodegradación Ambiental , Biomasa , Bosques , Pradera , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA