Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Cell ; 32(6): 2004-2019, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32213636

RESUMEN

The Arabidopsis (Arabidopsis thaliana) blue light photoreceptor phototropin1 (phot1) is a blue light-activated Ser/Thr protein kinase that mediates various light responses, including phototropism. The function of phot1 in hypocotyl phototropism is dependent on the light induction of ROOT PHOTOTROPISM2 (RPT2) proteins within a broad range of blue light intensities. It is not yet known however how RPT2 contributes to the photosensory adaptation of phot1 to high intensity blue light and the phototropic responses under bright light conditions. We show that RPT2 suppresses the activity of phot1 and demonstrate that RPT2 binds to the PHOT1 light, oxygen or voltage sensing1 (LOV1) domain that is required for its high photosensitivity. Our biochemical analyses revealed that RPT2 inhibits autophosphorylation of phot1, suggesting that it suppresses the photosensitivity and/or kinase activity of phot1 through the inhibition of LOV1 function. We found that RPT2 proteins are degraded via a ubiquitin-proteasome pathway when phot1 is inactive and are stabilized under blue light in a phot1-dependent manner. We propose that RPT2 is a molecular rheostat that maintains a moderate activation level of phot1 under any light intensity conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/genética
2.
Proc Natl Acad Sci U S A ; 114(34): 9206-9211, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28784810

RESUMEN

Living organisms detect changes in temperature using thermosensory molecules. However, these molecules and/or their mechanisms for sensing temperature differ among organisms. To identify thermosensory molecules in plants, we investigated chloroplast positioning in response to temperature changes and identified a blue-light photoreceptor, phototropin, that is an essential regulator of chloroplast positioning. Based on the biochemical properties of phototropin during the cellular response to light and temperature changes, we found that phototropin perceives temperature based on the temperature-dependent lifetime of the photoactivated chromophore. Our findings indicate that phototropin perceives both blue light and temperature and uses this information to arrange the chloroplasts for optimal photosynthesis. Because the photoactivated chromophore of many photoreceptors has a temperature-dependent lifetime, a similar temperature-sensing mechanism likely exists in other organisms. Thus, photoreceptors may have the potential to function as thermoreceptors.


Asunto(s)
Hepatophyta/metabolismo , Hepatophyta/efectos de la radiación , Fototropinas/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Hepatophyta/genética , Luz , Fotosíntesis , Fototropinas/genética , Proteínas de Plantas/genética , Temperatura
3.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927860

RESUMEN

Phototropin2 (phot2) is a blue-light (BL) receptor protein that regulates the BL-dependent activities of plants for efficient photosynthesis. Phot2 is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) to absorb BL, and a kinase domain. Photo-activated LOV domains, especially LOV2, play a major role in photo-dependent increase in the phosphorylation activity of the kinase domain. The atomic details of the overall structure of phot2 and the intramolecular mechanism to convert BL energy to a phosphorylation signal remain unknown. We performed structural studies on the LOV fragments LOV1, LOV2, LOV2-linker, and LOV2-kinase, and full-length phot2, using small-angle X-ray scattering (SAXS). The aim of the study was to understand structural changes under BL irradiation and discuss the molecular mechanism that enhance the phosphorylation activity under BL. SAXS is a suitable technique for visualizing molecular structures of proteins in solution at low resolution and is advantageous for monitoring their structural changes in the presence of external physical and/or chemical stimuli. Structural parameters and molecular models of the recombinant specimens were obtained from SAXS profiles in the dark, under BL irradiation, and after dark reversion. LOV1, LOV2, and LOV2-linker fragments displayed minimal structural changes. However, BL-induced rearrangements of functional domains were noted for LOV2-kinase and full-length phot2. Based on the molecular model together with the absorption measurements and biochemical assays, we discuss the intramolecular interactions and domain motions necessary for BL-enhanced phosphorylation activity of phot2.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Modelos Moleculares , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
J Biol Chem ; 293(3): 963-972, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29196607

RESUMEN

Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Luz , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Cristalografía por Rayos X , Fototropinas/química , Fototropinas/metabolismo , Transducción de Señal/efectos de la radiación
5.
J Synchrotron Radiat ; 25(Pt 5): 1379-1388, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179176

RESUMEN

In structure analyses of proteins in solution by using small-angle X-ray scattering (SAXS), the molecular models are restored by using ab initio molecular modeling algorithms. There can be variation among restored models owing to the loss of phase information in the scattering profiles, averaging with regard to the orientation of proteins against the direction of the incident X-ray beam, and also conformational fluctuations. In many cases, a representative molecular model is obtained by averaging models restored in a number of ab initio calculations, which possibly provide nonrealistic models inconsistent with the biological and structural information about the target protein. Here, a protocol for classifying predicted models by multivariate analysis to select probable and realistic models is proposed. In the protocol, each structure model is represented as a point in a hyper-dimensional space describing the shape of the model. Principal component analysis followed by the clustering method is applied to visualize the distribution of the points in the hyper-dimensional space. Then, the classification provides an opportunity to exclude nonrealistic models. The feasibility of the protocol was examined through the application to the SAXS profiles of four proteins.

6.
J Synchrotron Radiat ; 25(Pt 6): 1803-1818, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407193

RESUMEN

X-ray diffraction imaging is a technique for visualizing the structure of biological cells. In X-ray diffraction imaging experiments using synchrotron radiation, cryogenic conditions are necessary in order to reduce radiation damage in the biological cells. Frozen-hydrated biological specimens kept at cryogenic temperatures are also free from drying and bubbling, which occurs in wet specimens under vacuum conditions. In a previous study, the diffraction apparatus KOTOBUKI-1 [Nakasako et al. (2013), Rev. Sci. Instrum. 84, 093705] was constructed for X-ray diffraction imaging at cryogenic temperatures by utilizing a cryogenic pot, which is a cooling device developed in low-temperature physics. In this study a new cryogenic pot, suitable for tomography experiments, has been developed. The pot can rotate a biological cell over an angular range of ±170° against the direction of the incident X-ray beam. Herein, the details and the performance of the pot and miscellaneous devices are reported, along with established experimental procedures including specimen preparation. The apparatus has been used in tomography experiments for visualizing the three-dimensional structure of a Cyanidioschyzon merolae cell with an approximate size of 5 µm at a resolution of 136 nm. Based on the experimental results, the necessary improvements for future experiments and the resolution limit achievable under experimental conditions within a maximum tolerable dose are discussed.

7.
J Biol Chem ; 291(38): 19975-84, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27484797

RESUMEN

Phototropin1 is a blue light (BL) receptor in plants and shows BL-dependent kinase activation. The BL-excited light-oxygen-voltage-sensing domain 2 (LOV2) is primarily responsible for the activation of the kinase domain; however, the molecular mechanism by which conformational changes in LOV2 are transmitted to the kinase domain remains unclear. Here, we investigated BL-induced structural changes of a minimum functional fragment of Arabidopsis phototropin1 composed of LOV2, the kinase domain, and a linker connecting the two domains using small-angle x-ray scattering (SAXS). The fragment existed as a dimer and displayed photoreversible SAXS changes reflected in the radii of gyration of 42.9 Å in the dark and 48.8 Å under BL irradiation. In the dark, the molecular shape reconstructed from the SAXS profiles appeared as two bean-shaped lobes in a twisted arrangement that was 170 Å long, 80 Å wide, and 50 Å thick. The molecular shape under BL became slightly elongated from that in the dark. By fitting the crystal structure of the LOV2 dimer and a homology model of the kinase domain to their inferred shapes, the BL-dependent change could be interpreted as the positional shift in the kinase domain relative to that of the LOV2 dimer. In addition, we found that lysine 475, a functionally important residue, in the N-terminal region of LOV2 plays a critical role in transmitting the structural changes in LOV2 to the kinase domain. The interface between the domains is critical for signaling, suitably changing the structure to activate the kinase in response to conformational changes in the adjoining LOV2.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Unión al ADN/química , Fosfoproteínas/química , Multimerización de Proteína , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas , Estructura Cuaternaria de Proteína , Dispersión del Ángulo Pequeño
8.
Proc Natl Acad Sci U S A ; 111(41): 14764-9, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267654

RESUMEN

Knowledge of the dynamical behavior of proteins, and in particular their conformational fluctuations, is essential to understanding the mechanisms underlying their reactions. Here, transient enhancement of the isothermal partial molar compressibility, which is directly related to the conformational fluctuation, during a chemical reaction of a blue light sensor protein from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixD, Tll0078) was investigated in a time-resolved manner. The UV-Vis absorption spectrum of TePixD did not change with the application of high pressure. Conversely, the transient grating signal intensities representing the volume change depended significantly on the pressure. This result implies that the compressibility changes during the reaction. From the pressure dependence of the amplitude, the compressibility change of two short-lived intermediate (I1 and I2) states were determined to be +(5.6 ± 0.6) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I1 and +(6.6 ± 0.7) × 10(-2) cm(3) ⋅ mol(-1) ⋅ MPa(-1) for I2. This result showed that the structural fluctuation of intermediates was enhanced during the reaction. To clarify the relationship between the fluctuation and the reaction, the compressibility of multiply excited TePixD was investigated. The isothermal compressibility of I1 and I2 intermediates of TePixD showed a monotonic decrease with increasing excitation laser power, and this tendency correlated with the reactivity of the protein. This result indicates that the TePixD decamer cannot react when its structural fluctuation is small. We concluded that the enhanced compressibility is an important factor for triggering the reaction of TePixD. To our knowledge, this is the first report showing enhanced fluctuations of intermediate species during a protein reaction, supporting the importance of fluctuations.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Absorción Fisicoquímica , Rayos Láser , Procesos Fotoquímicos , Presión , Conformación Proteica
9.
Plant Cell Physiol ; 57(1): 152-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26707730

RESUMEN

Phototropins are light-activated receptor kinases that mediate a wide range of blue light responses responsible for the optimization of photosynthesis. Despite the physiological importance of phototropins, it is still unclear how they transduce light signals into physiological responses. Here, we succeeded in reproducing a primary step of phototropin signaling in vitro using a physiological substrate of phototropin, the BLUS1 (BLUE LIGHT SIGNALING1) kinase of guard cells. When PHOT1 and BLUS1 were expressed in Escherichia coli and the resulting recombinant proteins were incubated with ATP, white and blue light induced phosphorylation of BLUS1 but red light and darkness did not. Site-directed mutagenesis of PHOT1 and BLUS1 revealed that the phosphorylation was catalyzed by phot1 kinase. Similar to stomatal blue light responses, the BLUS1 phosphorylation depended on the fluence rate of blue light and was inhibited by protein kinase inhibitors, K-252a and staurosporine. In contrast to the result in vivo, BLUS1 was not dephosphorylated in vitro, suggesting the involvement of a protein phosphatase in the response in vivo. phot1 with a C-terminal kinase domain but devoid of the N-terminal domain, constitutively phosphorylated BLUS1 without blue light, indicating that the N-terminal domain has an autoinhibitory action and prevents substrate phosphorylation. The results provide the first reconstitution of a primary step of phototropin signaling and a clue for understanding the molecular nature of this process.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fototransducción , Fosfoproteínas/metabolismo , Fosfotransferasas/metabolismo , Fototropinas/metabolismo , Estomas de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Carbazoles/farmacología , Oscuridad , Alcaloides Indólicos/farmacología , Luz , Mutagénesis Sitio-Dirigida , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosforilación , Fosfotransferasas/genética , Fotosíntesis , Fototropinas/antagonistas & inhibidores , Fototropinas/genética , Fototropismo , Estomas de Plantas/genética , Estomas de Plantas/efectos de la radiación , Proteínas Serina-Treonina Quinasas , Proteínas Recombinantes
10.
EMBO J ; 31(16): 3457-67, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22781128

RESUMEN

Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Arabidopsis/enzimología , Arabidopsis/fisiología , Fosforilación , Procesos Fototróficos , Proteínas Serina-Treonina Quinasas , Transducción de Señal
11.
J Synchrotron Radiat ; 23(Pt 4): 975-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27359147

RESUMEN

Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.


Asunto(s)
Difracción de Rayos X , Electrones , Rayos Láser , Orgánulos , Rayos X
12.
Phys Chem Chem Phys ; 18(37): 25915-25925, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27711633

RESUMEN

SyPixD (Slr1694) is a blue-light receptor that contains a BLUF (blue-light sensor using a flavin chromophore) domain for the function of phototaxis. The key reaction of this protein is a light-induced conformational change and subsequent dissociation reaction from the decamer to the dimer. In this study, anomalous effects of pressure on this reaction were discovered, and changes in the compressibility of its short-lived intermediates were investigated. While the absorption spectra of the dark and light states are not sensitive to pressure, the formation yield of the first intermediate decreases with pressure to about 40% at 150 MPa. Upon blue-light illumination with a sufficiently strong intensity, the transient grating signal, which represents the dissociation of the SyPixD decamer, was observed at 0.1 MPa, and the signal intensity significantly decreased with increasing pressure. This behavior shows that the dissociation of the decamer from the second intermediate state is suppressed by pressure. However, while the decamer undergoes no dissociation upon excitation of one monomer unit at 0.1 MPa, dissociation is gradually induced with increasing pressure. For solving this strange behavior, the compressibility changes of the intermediates were measured as a function of pressure at weak light intensity. Interestingly, the compressibility change was negative at low pressure, but became positive with increasing pressure. Because the compressibility is related to the volume fluctuation, this observation suggests that the driving force for this reaction is fluctuation of the protein. The relationship between the cavities at the interfaces of the monomer units and the reactivity was also discussed.

13.
J Plant Res ; 129(2): 149-57, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26815763

RESUMEN

Phototropin (phot) is a blue light (BL) receptor kinase involved in the BL responses of several species, ranging from green algae to higher plants. Phot converts BL signals from the environment into biochemical signals that trigger cellular responses. In phot, the LOV1 and LOV2 domains of the N-terminal region utilize BL for cyclic photoreactions and regulate C-terminal serine/threonine kinase (STK) activity. LOV2-STK peptides are the smallest functional unit of phot and are useful for understanding regulation mechanisms. The combined analysis of spectroscopy and STK activity assay in Arabidopsis phots suggests that the decay speed of the photo-intermediate S390 in LOV2 is one of the factors contributing to light sensitive kinase activity. LOV2 and STK are thought to be adjacent to each other in LOV2-STK with small angle scattering (SAXS). BL irradiation induces LOV2-STK elongation, resulting in LOV2 shifting away from STK. The N- and C-terminal lateral regions of LOV2, A'α-helix, Jα-helix, and A'α/Aß gap are responsible for the propagation of the BL signal to STK via conformational changes. The comparison between LOV2-STK and full-length phot from Chlamydomonas suggests that LOV1 is directly adjacent to LOV2 in LOV2-STK; therefore, LOV1 may indirectly regulate STK. The molecular mechanism of phot is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Fototransducción , Fototropinas/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chlamydomonas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ambiente , Luz , Modelos Moleculares , Fosforilación , Fototropinas/química , Fototropinas/genética , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Secundaria de Proteína
14.
J Biol Chem ; 289(1): 413-22, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24285544

RESUMEN

Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Luz , Modelos Moleculares , Fototropinas/química , Proteínas Quinasas/química , Transducción de Señal/efectos de la radiación , Chlamydomonas reinhardtii/genética , Fototropinas/genética , Fototropinas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Transducción de Señal/fisiología , Difracción de Rayos X
15.
J Biol Chem ; 287(49): 40972-81, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23066024

RESUMEN

Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391-3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Cisteína/análogos & derivados , Cisteína/química , Flavinas/química , Fosfoproteínas/fisiología , Fosfotransferasas/química , Fototropinas/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/fisiología , Activación Enzimática , Vectores Genéticos , Cinética , Luz , Fosforilación , Fosfotransferasas/metabolismo , Fotoquímica/métodos , Fototropismo , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Espectrofotometría Ultravioleta/métodos
16.
J Biol Chem ; 287(13): 9901-9909, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22291022

RESUMEN

Phototropin is a light-regulated kinase that mediates a variety of photoresponses such as phototropism, chloroplast positioning, and stomata opening in plants to increase the photosynthetic efficiency. Blue light stimulus first induces local conformational changes in the chromophore-bearing light-oxygen and voltage 2 (LOV2) domain of phototropin, which in turn activates the serine/threonine (Ser/Thr) kinase domain in the C terminus. To examine the kinase activity of full-length phototropin conventionally, we employed the budding yeast Saccharomyces cerevisiae. In this organism, Ser/Thr kinases (Fpk1p and Fpk2p) that show high sequence similarity to the kinase domain of phototropins exist. First, we demonstrated that the phototropin from Chlamydomonas reinhardtii (CrPHOT) could complement loss of Fpk1p and Fpk2p to allow cell growth in yeast. Furthermore, this reaction was blue light-dependent, indicating that CrPHOT was indeed light-activated in yeast cells. We applied this system to a large scale screening for amino acid substitutions in CrPHOT that elevated the kinase activity in darkness. Consequently, we identified a cluster of mutations located in the N-terminal flanking region of LOV2 (R199C, L202L, D203N/G/V, L204P, T207I, and R210H). An in vitro phosphorylation assay confirmed that these mutations substantially reduced the repressive activity of LOV2 on the kinase domain in darkness. Furthermore, biochemical analyses of the representative T207I mutant demonstrated that the mutation affected neither spectral nor multimerization properties of CrPHOT. Hence, the N-terminal flanking region of LOV2, as is the case with the C-terminal flanking Jα region, appears to play a crucial role in the regulation of kinase activity in phototropin.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Mutación , Fototropinas/metabolismo , Multimerización de Proteína , Chlamydomonas reinhardtii/genética , Fosforilación/genética , Fototropinas/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Photochem Photobiol Sci ; 12(7): 1180-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23535998

RESUMEN

TePixD is a blue-light sensor protein from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixD Tll0078). Although the photochemistry has been examined, so far the photoproduct remains unknown. We have measured the diffusion coefficient (D) of TePixD in the dark by dynamic light scattering and have discovered a very peculiar diffusion property; the decamer oligomer has a larger D than that of the pentamer. Furthermore, D of the pentamer was found to be very close to that of the TePixD decamer photoreaction product. In order to investigate this reaction further, elution profiles of size-exclusion chromatography were measured under dark and illuminated conditions at low (40 µM) and high (1.1 mM) TePixD concentrations. On the basis of these results, we have concluded that the main photoreaction of the TePixD decamer is the dissociation into the pentamer. The secondary structure change associated with this reaction was found to be minor according to circular dichroism analysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotorreceptores Microbianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromatografía en Gel , Dicroismo Circular , Cianobacterias/metabolismo , Difusión , Luz , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dispersión de Radiación
18.
Sci Rep ; 13(1): 10802, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407674

RESUMEN

Genome compaction and activity in the nucleus depend on spatiotemporal changes in the organization of chromatins in chromosomes. However, the direct imaging of the chromosome structures in the nuclei has been difficult and challenging. Herein, we directly visualized the structure of chromosomes in frozen-hydrated nuclei of budding yeast in the interphase using X-ray laser diffraction. The reconstructed projection electron density maps revealed inhomogeneous distributions of chromosomes, such as a 300 nm assembly and fibrous substructures in the elliptic-circular shaped nuclei of approximately 800 nm. In addition, from the diffraction patterns, we confirmed the absence of regular arrangements of chromosomes and chromatins with 400-20 nm spacing, and demonstrated that chromosomes were composed of self-similarly assembled substructural domains with an average radius of gyration of 58 nm and smooth surfaces. Based on these analyses, we constructed putative models to discuss the organization of 16 chromosomes, carrying DNA of 4.1 mm in 800 nm ellipsoid of the nucleus at the interphase. We anticipate the structural parameters on the fractal property of chromosomes and the experimental images to be a starting point for constructing more sophisticated 3D structural models of the nucleus.


Asunto(s)
Fractales , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Rayos X , Cromosomas , Núcleo Celular/ultraestructura , Cromatina , Interfase , Difracción de Rayos X
19.
J Am Chem Soc ; 134(20): 8336-9, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22563901

RESUMEN

PixD (Slr1694) is a blue light receptor that contains a BLUF (blue light sensors using a flavin chromophore) domain. A protein-protein interaction between PixD and a response regulator PixE (Slr1693) is essential to achieve light signal transduction for phototaxis of the species. Although the initial photochemical reaction of PixD, the red shift of the flavin absorption spectrum, has been investigated, the subsequent reaction dynamics remain largely unresolved. Only the disassembly of the PixD(10)-PixE(5) dark complex has been characterized by static size exclusion chromatography. In this report, interprotein reaction dynamics were examined using time-resolved transient grating spectroscopy. The dissociation process was clearly observed as the light-induced diffusion coefficient change in the time domain, and the kinetics was determined. More strikingly, disassembly was found to take place only after photoactivation of two PixD subunits in the complex. This result suggests that the biological response of PixD does not follow a linear correlation with the light intensity but appears to be light-intensity-dependent.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotorreceptores Microbianos/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/química , Cinética , Luz , Fototransducción , Modelos Moleculares , Fotorreceptores Microbianos/química , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Análisis Espectral , Synechocystis/química
20.
Biochemistry ; 50(7): 1174-83, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21222437

RESUMEN

Phototropin, a blue-light receptor protein of plants, triggers phototropic responses, chloroplast relocation, and opening of stomata to maximize the efficiency of photosynthesis. Phototropin is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) that absorb blue light and a serine/theroine kinase domain responsible for light-dependent autophosphorylation leading to cellular signaling cascades. Although the light-activated LOV2 domain is primarily responsible for subsequent activation of the kinase domain, it is unclear how conformational changes in the former transmit to the latter. To understand this molecular mechanism in Arabidopsis phototropin 2, we performed small-angle X-ray scattering analysis on a fragment composed of the LOV2 and kinase domains, which contained an Asp720Asn mutation that led to an absence of ATP binding activity. The scattering data were collected up to a resolution of 25 Å. The apparent molecular weight of the fragment estimated from scattering intensities demonstrated that the fragment existed in a monomeric form in solution. The fragment exhibited photoreversible changes in the scattering profiles, and the radii of gyration under dark and blue-light irradiation conditions were 32.4 and 34.8 Å, respectively. In the dark, the molecular shape restored from the scattering profile appeared as an elongated shape of 110 Å in length and 45 Å in width. The homology modeled LOV2 and kinase domains could be fitted to the molecular shape and appeared to make slight contact. However, under blue-light irradiation, a more extended molecular shape was observed. The changes in the molecular shape and radius of gyration were interpreted as a light-dependent positional shift of the LOV2 domain of approximately 13 Å from the kinase domain. Because the region connecting the LOV2 and kinase domains was categorized as a naturally unfolded polypeptide, we propose that the light-activated LOV2 domain triggers conformational changes in the linker region to separate the LOV2 and kinase domains.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Luz , Movimiento/efectos de la radiación , Pliegue de Proteína/efectos de la radiación , Sustitución de Aminoácidos/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Asparagina/genética , Ácido Aspártico/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Fosfotransferasas/fisiología , Conformación Proteica/efectos de la radiación , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Estructura Terciaria de Proteína/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA