Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 615(7954): 900-906, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922585

RESUMEN

Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.


Asunto(s)
Ingeniería Genética , Técnicas In Vitro , Oocitos , Cromosoma X , Animales , Femenino , Masculino , Ratones , Oocitos/metabolismo , Oocitos/fisiología , Cromosoma X/genética , Cromosoma Y/genética , Células Madre Pluripotentes/metabolismo , Síndrome de Down/genética , Síndrome de Down/terapia , Fertilización , Infertilidad/terapia , Homosexualidad Masculina , Trastornos de los Cromosomas Sexuales/complicaciones , Trastornos de los Cromosomas Sexuales/genética , Trastornos de los Cromosomas Sexuales/terapia , Ingeniería Genética/métodos
2.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
3.
EMBO J ; 41(13): e110600, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35703121

RESUMEN

Germ cells are unique in engendering totipotency, yet the mechanisms underlying this capacity remain elusive. Here, we perform comprehensive and in-depth nucleome analysis of mouse germ-cell development in vitro, encompassing pluripotent precursors, primordial germ cells (PGCs) before and after epigenetic reprogramming, and spermatogonia/spermatogonial stem cells (SSCs). Although epigenetic reprogramming, including genome-wide DNA de-methylation, creates broadly open chromatin with abundant enhancer-like signatures, the augmented chromatin insulation safeguards transcriptional fidelity. These insulatory constraints are then erased en masse for spermatogonial development. Notably, despite distinguishing epigenetic programming, including global DNA re-methylation, the PGCs-to-spermatogonia/SSCs development entails further euchromatization. This accompanies substantial erasure of lamina-associated domains, generating spermatogonia/SSCs with a minimal peripheral attachment of chromatin except for pericentromeres-an architecture conserved in primates. Accordingly, faulty nucleome maturation, including persistent insulation and improper euchromatization, leads to impaired spermatogenic potential. Given that PGCs after epigenetic reprogramming serve as oogenic progenitors as well, our findings elucidate a principle for the nucleome programming that creates gametogenic progenitors in both sexes, defining a basis for nuclear totipotency.


Asunto(s)
Epigénesis Genética , Células Germinativas , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , Epigenómica , Femenino , Células Germinativas/metabolismo , Masculino , Mamíferos/genética , Ratones , Espermatogonias
4.
Nature ; 537(7618): 57-62, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556940

RESUMEN

The epiblast (EPI) is the origin of all somatic and germ cells in mammals, and of pluripotent stem cells in vitro. To explore the ontogeny of human and primate pluripotency, here we perform comprehensive single-cell RNA sequencing for pre- and post-implantation EPI development in cynomolgus monkeys (Macaca fascicularis). We show that after specification in the blastocysts, EPI from cynomolgus monkeys (cyEPI) undergoes major transcriptome changes on implantation. Thereafter, while generating gastrulating cells, cyEPI stably maintains its transcriptome over a week, retains a unique set of pluripotency genes and acquires properties for 'neuron differentiation'. Human and monkey pluripotent stem cells show the highest similarity to post-implantation late cyEPI, which, despite co-existing with gastrulating cells, bears characteristics of pre-gastrulating mouse EPI and epiblast-like cells in vitro. These findings not only reveal the divergence and coherence of EPI development, but also identify a developmental coordinate of the spectrum of pluripotency among key species, providing a basis for better regulation of human pluripotency in vitro.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Macaca fascicularis/embriología , Células Madre Pluripotentes/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Humanos , Macaca fascicularis/genética , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma
5.
Genes Dev ; 28(5): 463-78, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24589776

RESUMEN

Many loci maintain parent-of-origin DNA methylation only briefly after fertilization during mammalian development: Whether this form of transient genomic imprinting can impact the early embryonic transcriptome or even have life-long consequences on genome regulation and possibly phenotypes is currently unknown. Here, we report a maternal germline differentially methylated region (DMR) at the mouse Gpr1/Zdbf2 (DBF-type zinc finger-containing protein 2) locus, which controls the paternal-specific expression of long isoforms of Zdbf2 (Liz) in the early embryo. This DMR loses parental specificity by gain of DNA methylation at implantation in the embryo but is maintained in extraembryonic tissues. As a consequence of this transient, tissue-specific maternal imprinting, Liz expression is restricted to the pluripotent embryo, extraembryonic tissues, and pluripotent male germ cells. We found that Liz potentially functions as both Zdbf2-coding RNA and cis-regulatory RNA. Importantly, Liz-mediated events allow a switch from maternal to paternal imprinted DNA methylation and from Liz to canonical Zdbf2 promoter use during embryonic differentiation, which are stably maintained through somatic life and conserved in humans. The Gpr1/Zdbf2 locus lacks classical imprinting histone modifications, but analysis of mutant embryonic stem cells reveals fine-tuned regulation of Zdbf2 dosage through DNA and H3K27 methylation interplay. Together, our work underlines the developmental and evolutionary need to ensure proper Liz/Zdbf2 dosage as a driving force for dynamic genomic imprinting at the Gpr1/Zdbf2 locus.


Asunto(s)
Metilación de ADN , Impresión Genómica/genética , Mamíferos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Humanos , Masculino , Mamíferos/embriología , Mamíferos/metabolismo , Ratones , Regiones Promotoras Genéticas , Espermatogénesis/genética
6.
EMBO J ; 36(13): 1888-1907, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28559416

RESUMEN

The expansion of primordial germ cells (PGCs), the precursors for the oocytes and spermatozoa, is a key challenge in reproductive biology/medicine. Using a chemical screening exploiting PGC-like cells (PGCLCs) induced from mouse embryonic stem cells (ESCs), we here identify key signaling pathways critical for PGCLC proliferation. We show that the combinatorial application of Forskolin and Rolipram, which stimulate cAMP signaling via different mechanisms, expands PGCLCs up to ~50-fold in culture. The expanded PGCLCs maintain robust capacity for spermatogenesis, rescuing the fertility of infertile mice. Strikingly, during expansion, PGCLCs comprehensively erase their DNA methylome, including parental imprints, in a manner that precisely recapitulates genome-wide DNA demethylation in gonadal germ cells, while essentially maintaining their identity as sexually uncommitted PGCs, apparently through appropriate histone modifications. By establishing a paradigm for PGCLC expansion, our system reconstitutes the epigenetic "blank slate" of the germ line, an immediate precursory state for sexually dimorphic differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/fisiología , Epigénesis Genética , Células Germinativas/crecimiento & desarrollo , Animales , Colforsina/metabolismo , Células Germinativas/efectos de los fármacos , Ratones , Rolipram/metabolismo , Transducción de Señal
7.
Biol Reprod ; 102(3): 620-638, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31724030

RESUMEN

In vitro reconstitution of germ-cell development from pluripotent stem cells (PSCs) has created key opportunities to explore the fundamental mechanisms underlying germ-cell development, particularly in mice and humans. Importantly, such investigations have clarified critical species differences in the mechanisms regulating mouse and human germ-cell development, highlighting the necessity of establishing an in vitro germ-cell development system in other mammals, such as non-human primates. Here, we show that multiple lines of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in cynomolgus monkeys (Macaca fascicularis; cy) can be maintained stably in an undifferentiated state under a defined condition with an inhibitor for WNT signaling, and such PSCs are induced efficiently into primordial germ cell-like cells (PGCLCs) bearing a transcriptome similar to early cyPGCs. Interestingly, the induction kinetics of cyPGCLCs from cyPSCs is faster than that of human (h) PGCLCs from hPSCs, and while the transcriptome dynamics during cyPGCLC induction is relatively similar to that during hPGCLC induction, it is substantially divergent from that during mouse (m) PGCLC induction. Our findings delineate common as well as species-specific traits for PGC specification, creating a foundation for parallel investigations into the mechanism for germ-cell development in mice, monkeys, and humans.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes/citología , Animales , Células Madre Pluripotentes Inducidas/citología , Macaca fascicularis , Transcriptoma
8.
Nature ; 485(7398): 381-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22495304

RESUMEN

In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C) and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.


Asunto(s)
ARN no Traducido/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Diferenciación Celular , ADN Intergénico/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Epigenómica , Femenino , Fibroblastos , Regulación de la Expresión Génica , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Metilación , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante , Transcriptoma , Cromosoma X/química
9.
Nature ; 472(7343): 370-4, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21471966

RESUMEN

X-chromosome inactivation (XCI) in female mammals allows dosage compensation for X-linked gene products between the sexes. The developmental regulation of this process has been extensively investigated in mice, where the X chromosome of paternal origin (Xp) is silenced during early embryogenesis owing to imprinted expression of the regulatory RNA, Xist (X-inactive specific transcript). Paternal XCI is reversed in the inner cell mass of the blastocyst and random XCI subsequently occurs in epiblast cells. Here we show that other eutherian mammals have very different strategies for initiating XCI. In rabbits and humans, the Xist homologue is not subject to imprinting and XCI begins later than in mice. Furthermore, Xist is upregulated on both X chromosomes in a high proportion of rabbit and human embryo cells, even in the inner cell mass. In rabbits, this triggers XCI on both X chromosomes in some cells. In humans, chromosome-wide XCI has not initiated even by the blastocyst stage, despite the upregulation of XIST. The choice of which X chromosome will finally become inactive thus occurs downstream of Xist upregulation in both rabbits and humans, unlike in mice. Our study demonstrates the remarkable diversity in XCI regulation and highlights differences between mammals in their requirement for dosage compensation during early embryogenesis.


Asunto(s)
Cromosomas de los Mamíferos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mamíferos/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Evolución Biológica , Blastocisto/metabolismo , Compensación de Dosificación (Genética)/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Genes Ligados a X/genética , Impresión Genómica/genética , Histonas/metabolismo , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Masculino , Mamíferos/embriología , Ratones , Partenogénesis , ARN Largo no Codificante , ARN no Traducido/genética , Conejos , Especificidad de la Especie , Regulación hacia Arriba/genética
10.
Nucleic Acids Res ; 43(9): e60, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25722368

RESUMEN

Single-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10,000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers. The SC3-seq has clear advantages over other typical single-cell RNA-seq methodologies for the quantitative measurement of transcript levels and at a sequence depth required for the saturation of transcript detection. The SC3-seq distinguishes four distinct cell types in the peri-implantation mouse blastocysts. Furthermore, the SC3-seq reveals the heterogeneity in human-induced pluripotent stem cells (hiPSCs) cultured under on-feeder as well as feeder-free conditions, demonstrating a more homogeneous property of the feeder-free hiPSCs. We propose that SC3-seq might be used as a powerful strategy for single-cell transcriptome analysis in a broad range of investigations in biomedical sciences.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Animales , Blastocisto/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
PLoS Genet ; 9(11): e1003791, 2013 11.
Artículo en Inglés | MEDLINE | ID: mdl-24244175

RESUMEN

In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs.


Asunto(s)
Proteínas Argonautas/genética , ARN Helicasas DEAD-box/genética , Células Madre Embrionarias/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , Interferencia de ARN , Ribonucleasa III/genética , Regiones no Traducidas 5' , Animales , Diferenciación Celular/genética , Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Metilación de ADN/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Regiones Promotoras Genéticas , Retroelementos/genética , Ribonucleasa III/metabolismo
13.
Bull Acad Natl Med ; 197(3): 609-17, 2013 Mar.
Artículo en Francés | MEDLINE | ID: mdl-25163344

RESUMEN

X chromosome inactivation (XCI) is a very good model of epigenetic changes that occur during early development. This essential process occurring in females leads to X-linked gene dosage compensation between the sexes. Recent data suggest that different mammalian species may use different strategies to initiate XCI during early embryogenesis. In mice, XCI occurs in two waves, imprinted during preimplantation then random in the embryo. In humans, XCI is not imprinted and has not yet been triggered at the blastocyst stage. These results highlight the remarkable diversity of XCI mechanisms.


Asunto(s)
Cromosomas Humanos X/genética , Desarrollo Embrionario/genética , Inactivación del Cromosoma X/genética , Animales , Femenino , Impresión Genómica , Edad Gestacional , Humanos , Ratones
14.
Proc Natl Acad Sci U S A ; 106(13): 5198-203, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19273861

RESUMEN

In mammals, X-chromosome dosage compensation is achieved by inactivating one of the two X chromosomes in females. In mice, X inactivation is initially imprinted, with inactivation of the paternal X (Xp) chromosome occurring during preimplantation development. One theory is that the Xp is preinactivated in female embryos, because of its previous silence during meiosis in the male germ line. The extent to which the Xp is active after fertilization and the exact time of onset of X-linked gene silencing have been the subject of debate. We performed a systematic, single-cell transcriptional analysis to examine the activity of the Xp chromosome for a panel of X-linked genes throughout early preimplantation development in the mouse. Rather than being preinactivated, we found the Xp to be fully active at the time of zygotic gene activation, with silencing beginning from the 4-cell stage onward. X-inactivation patterns were, however, surprisingly diverse between genes. Some loci showed early onset (4-8-cell stage) of X inactivation, and some showed extremely late onset (postblastocyst stage), whereas others were never fully inactivated. Thus, we show that silencing of some X-chromosomal regions occurs outside of the usual time window and that escape from X inactivation can be highly lineage specific. These results reveal that imprinted X inactivation in mice is far less concerted than previously thought and highlight the epigenetic diversity underlying the dosage compensation process during early mammalian development.


Asunto(s)
Impresión Genómica , Inactivación del Cromosoma X , Cromosoma X , Animales , Desarrollo Embrionario/genética , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Genes Ligados a X , Masculino , Ratones , Transcripción Genética
15.
Nature ; 438(7066): 369-73, 2005 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-16227973

RESUMEN

In mammals, one of the two X chromosomes is inactivated in females to enable dosage compensation for X-linked gene products. In rodents and marsupials, only the X chromosome of paternal origin (Xp) is silenced during early embryogenesis. This could be due to a carry-over effect of the X chromosome's passage through the male germ line, where it becomes transiently silenced together with the Y chromosome, during meiotic sex chromosome inactivation (MSCI). Here we show that Xist (X inactive specific transcript) transgenes, located on autosomes, do not undergo MSCI in the male germ line of mice and yet can induce imprinted cis-inactivation when paternally inherited, with identical kinetics to the Xp chromosome. This suggests that MSCI is not necessary for imprinted X-chromosome inactivation in mice. We also show that the Xp is transcribed, like autosomes, at zygotic gene activation rather than being 'pre-inactivated'. We propose that expression of the paternal Xist gene at zygotic gene activation is sufficient to trigger cis-inactivation of the X chromosome, or of an autosome carrying a Xist transgene.


Asunto(s)
Impresión Genómica/genética , Meiosis/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Embrión de Mamíferos/metabolismo , Femenino , Silenciador del Gen , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Transgénicos , ARN Largo no Codificante , ARN no Traducido/genética , Espermatocitos/metabolismo , Transcripción Genética/genética , Transgenes/genética , Cromosoma Y/genética , Cigoto/metabolismo
16.
Science ; 374(6570): eabd8887, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34793202

RESUMEN

X chromosome dosage compensation ensures balanced gene dosage between the X chromosome and autosomes and between the sexes, involving divergent mechanisms among mammals. We elucidated a distinct mechanism for X chromosome inactivation (XCI) in cynomolgus monkeys, a model for human development. The trophectoderm and cytotrophoblast acquire XCI around implantation through an active intermediate bearing repressive modifications and compacted structure, whereas the amnion, epiblast, and hypoblast maintain such an intermediate protractedly, attaining XCI by a week after implantation. Males achieve X chromosome up-regulation (XCU) progressively, whereas females show XCU coincidentally with XCI, both establishing the X:autosome dosage compensation by 1 week after implantation. Conversely, primordial germ cells undergo X chromosome reactivation by reversing the XCI pathway early during their development. Our findings establish a foundation for clarifying the dosage compensation mechanisms in primates, including humans.


Asunto(s)
Blastocisto/fisiología , Compensación de Dosificación (Genética) , Macaca fascicularis/embriología , Macaca fascicularis/genética , Trofoblastos/fisiología , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Células Germinativas/fisiología , Histonas/metabolismo , Metilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba , Cromosoma X/metabolismo , Cromosoma X/ultraestructura
17.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608411

RESUMEN

The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.


Asunto(s)
Células Germinativas/metabolismo , Factores de Transcripción SOXF/metabolismo , Factor de Transcripción AP-2/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Células Germinativas/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Macaca fascicularis , Ratones , Ratones Endogámicos ICR , Factores de Transcripción SOXF/genética , Transducción de Señal/genética , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo
18.
Cell Rep ; 35(5): 109075, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33951437

RESUMEN

In the early fetal stage, the gonads are bipotent and only later become the ovary or testis, depending on the genetic sex. Despite many studies examining how sex determination occurs from biopotential gonads, the spatial and temporal organization of bipotential gonads and their progenitors is poorly understood. Here, using lineage tracing in mice, we find that the gonads originate from a T+ primitive streak through WT1+ posterior intermediate mesoderm and appear to share origins anteriorly with the adrenal glands and posteriorly with the metanephric mesenchyme. Comparative single-cell transcriptomic analyses in mouse and cynomolgus monkey embryos reveal the convergence of the lineage trajectory and genetic programs accompanying the specification of biopotential gonadal progenitor cells. This process involves sustained expression of epithelial genes and upregulation of mesenchymal genes, thereby conferring an epithelial-mesenchymal hybrid state. Our study provides key resources for understanding early gonadogenesis in mice and primates.


Asunto(s)
Células Madre Adultas/metabolismo , Gónadas/fisiología , Animales , Diferenciación Celular , Macaca fascicularis , Masculino , Ratones
19.
Cell Stem Cell ; 28(6): 1023-1039.e13, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33831365

RESUMEN

Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Diferenciación Celular , Femenino , Humanos , Placenta , Embarazo
20.
Chromosome Res ; 17(5): 659-69, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19802706

RESUMEN

In most mammals, X-chromosome inactivation is used as the strategy to achieve dosage compensation between XX females and XY males. This process is developmentally regulated, resulting in the differential treatment of the two X chromosomes in the same nucleus and mitotic heritability of the silent state. A lack of dosage compensation in an XX embryo is believed to result in early lethality, at least in eutherians. Given its fundamental importance, X-chromosome inactivation would be predicted to be a highly conserved process in mammals. However, recent studies have revealed major mechanistic differences in X inactivation between eutherians and marsupials, suggesting that the evolution of the X chromosome as well as developmental differences between mammals have led to diverse evolutionary strategies for dosage compensation.


Asunto(s)
Mamíferos/genética , Inactivación del Cromosoma X , Animales , Evolución Biológica , Epigénesis Genética , Femenino , Silenciador del Gen , Humanos , Masculino , ARN Largo no Codificante , ARN no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA