Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(8): 774, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090377

RESUMEN

Potentially toxic elements (PTEs) are widely released into the environment as a result of increased urban and industrial development in recent years. The bulk of PTEs are cancer-causing and harm human health by producing free radicals. As a result, it is crucial to monitor, evaluate, and limit the effects of the elements on human health. In this study, levels of PTEs (As, Cr, Cd, Ni, Co, and Pb) in pharmaceutical effluents discharged along the Asa River around the Ilorin metropolis and their seasonal variations were evaluated. Water samples were collected from eight different locations over a two-season period along the river and analyzed for PTEs using atomic absorption spectrophotometry and an inductively coupled plasma optical emission spectrometer. As, Cd, Pb, Cr, Ni, and Co had mean PTE values in the effluents (both seasons) of 0.0258, 0.0233, 0.00193, 0.0176, and 0.0164 mg/L, respectively, with As and Pb surpassing the WHO standard. Maximum temperature and pH were measured for the physicochemical parameters in the wet season, whereas electrical conductivity and total dissolved solids were seen in the dry season. The average values of the metals in the human risk assessment for carcinogenicity were As > Cd > Pb > Cr > Ni > Co, with As above the recommended threshold in several locations. However, all of the metal hazard indices were < 1, indicating that the waters were suitable for domestic purposes. Nonetheless, the relevant authorities should mandate that pharmaceutical effluents be treated before being released into bodies of water.


Asunto(s)
Monitoreo del Ambiente , Estaciones del Año , Contaminantes Químicos del Agua , Nigeria , Contaminantes Químicos del Agua/análisis , Humanos , Medición de Riesgo , Aguas Residuales/química , Preparaciones Farmacéuticas/análisis , Metales Pesados/análisis , Arsénico/análisis , Ríos/química , Ciudades
2.
Bull Environ Contam Toxicol ; 104(5): 619-626, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32172338

RESUMEN

Cadmium contamination of agricultural soils is a serious problem due to its toxic effects on health and yield of crop plants. This study investigates the potential of low-dose nano-TiO2 as soil nanoremediation on Cd toxicity in cowpea plants. To achieve this goal, cowpea seeds were germinated on Cd-spiked soils at 10 mg/kg for 14 days and later augmented with 100 mg nTiO2/kg (nTiO2-50 nm and bTiO2-68 nm, respectively). The results showed that chlorophylls were not altered by nano-TiO2 intervention. Cadmium partitioning in roots and leaves was reduced by the applied nano-TiO2 but significantly higher than control. Ascorbate peroxidase and catalase activities in roots and leaves were promoted by nano-TiO2 intervention compared to control and sole Cd, respectively. However, magnitudes of activity of enzyme activities were higher in nTiO2 compared to bTiO2 treatments. The enhanced enzymes activity led to reduced malonaldehyde content in plant tissues. The study concludes that soil application of nano-TiO2 could be a green alternative to ameliorate soil Cd toxicity in cowpea plants.


Asunto(s)
Cadmio/metabolismo , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Titanio/farmacología , Vigna/efectos de los fármacos , Vigna/enzimología , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Cadmio/toxicidad , Clorofila/metabolismo , Germinación , Malondialdehído/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Semillas , Suelo/química , Contaminantes del Suelo/metabolismo , Titanio/química , Vigna/crecimiento & desarrollo
3.
Bull Environ Contam Toxicol ; 94(5): 609-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25820433

RESUMEN

The effect of tributyltin (TBT) on the stability of hemocytic lysosome membranes of the mussel, Mytilus galloprovincialis, and the use thereof as a biomarker of TBT-induced stress, was investigated. Mussels were exposed to 0.1 and 1.0 µg/L tributyltin respectively for 4 weeks. Lysosomal membrane stability of hemocytes was tested weekly by means of the neutral red retention time (NRRT) assay, after which the mussel samples were analyzed for TBT content. The two exposed groups exhibited significantly increased (p < 0.05) whole body TBT concentrations with concomitant significant decreases (p < 0.05) in NRRT (R(2) values of 0.85 and 0.971 for lower and higher exposure groups, respectively). The higher exposure group showed a typical dose-response curve. For the control, no TBT was detected and NRRT remained stable. It was concluded that the NRRT assay could be considered as a useful technique, and lysosomal membrane destabilization a useful early warning and cellular biomarker of stress due to TBT exposure in M. galloprovincialis.


Asunto(s)
Monitoreo del Ambiente/métodos , Mytilus/efectos de los fármacos , Compuestos de Trialquiltina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Hemocitos/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Lisosomas/efectos de los fármacos , Rojo Neutro/química
4.
Heliyon ; 10(4): e26443, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420395

RESUMEN

This research entails a comparison of the effectiveness of unmodified Luffa cylindrica fiber in a fully packed bed (RLCF) and NaOH-modified Luffa cylindrica fiber in another fully packed bed (MLCF) in the context of phenol removal from wastewater. Experimental data obtained through batch adsorption experiments were utilized to determine the most suitable model. It was observed that as the initial concentration of phenol increased from 100 to 500 mg/l, the maximum percentage removal increased from 63.5 to 83.1% for RLCF-PB and from 89.9 to 99.5% for MLCF-PB. The correlation coefficient (R2) was calculated for the Langmuir, Freundlich, Temkin, Harkin-Jura, Halsey, and Flory-Huggins models for both materials. The analysis revealed that the pseudo-second-order model was the most suitable, followed by the Elovich model, with the pseudo-first-order model being the least suitable. The Weber-Morris diffusion model suggested that pore diffusion was the rate-determining step, and diffusion at the border layer was determined to be endothermic, feasible, heterogeneous, and spontaneous. In summary, this study indicates that MLCF-PB is a promising material for the efficient removal of phenol from aqueous solutions.

5.
Heliyon ; 10(11): e31685, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841437

RESUMEN

Potentially toxic elements (PTEs) in sediment can be highly hazardous to the environment and public health. This study aimed to assess the human and ecological risks of PTEs in sediments around a pharmaceutical industry in Ilorin, Nigeria. Physicochemical parameters and the concentrations of lead (Pb), chromium (Cr), cadmium (Cd), cobalt (Co), arsenic (As), and nickel (Ni) were analyzed in sediment samples collected from seven locations in the wet and dry seasons. Standard two-dimensional principal component analysis (PCA) and risk assessments were also conducted. The concentrations of Pb, Co, Ni, Cr, Cd, and As in the sediments ranged from 0.001 to 0.031 mg/kg, 0-0.005 mg/kg, 0.005-0.012 mg/kg, 0.001-0.014 mg/kg, 0.005-0.024 mg/kg, and 0.001-0.012 mg/kg, respectively. The mean concentrations of the total PTEs content were found in decreasing order of concentration: Pb > Cd > Ni > Cr > As > Co. PCA showed that some of the PTEs were highly concentrated in samples obtained at other locations as well as at the discharge point. The Hazard Index was mostly <1 across locations, indicating little to no probable non-cancerous effect. However, the incremental lifetime cancer risk for arsenic and nickel was high and required attention. The ecological risk assessment showed that lead and arsenic were the major PTEs pollutants in all locations. The study identifies PTEs profiles in sediments and emphasises the necessity of continual monitoring and action to stop long-term negative impacts on the local environment and public health.

6.
Heliyon ; 9(10): e20440, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37790970

RESUMEN

Microplastics, measuring less than 5 mm in diameter, are now found in various environmental media, including soil, water, and air, and have infiltrated the food chain, ultimately becoming a part of the human diet. This study offers a comprehensive examination of the intricate nexus between microplastics and human health, thereby contributing to the existing knowledge on the subject. Sources of microplastics, including microfibers from textiles, personal care products, and wastewater treatment plants, among others, were assessed. The study meticulously examined the diverse routes of microplastic exposure-ingestion, inhalation, and dermal contact-offering insights into the associated health risks. Notably, ingestion of microplastics has been linked to gastrointestinal disturbances, endocrine disruption, and the potential transmission of pathogenic bacteria. Inhalation of airborne microplastics emerges as a critical concern, with possible implications for respiratory and cardiovascular health. Dermal contact, although less explored, raises the prospect of skin irritation and allergic reactions. The impacts of COVID-19 on microplastic pollution were also highlighted. Throughout the manuscript, the need for a deeper mechanistic understanding of microplastic interactions with human systems is emphasized, underscoring the urgency for further research and public awareness.

7.
Sci Rep ; 13(1): 21220, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040785

RESUMEN

Food safety has become a serious global concern because of the accumulation of potentially toxic metals (PTMs) in crops cultivated on contaminated agricultural soils. Amongst these toxic elements, arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb) receive worldwide attention because of their ability to cause deleterious health effects. Thus, an assessment of these toxic metals in the soils, irrigation waters, and the most widely consumed vegetables in Nigeria; Spinach (Amaranthushybridus), and Cabbage (Brassica oleracea) was evaluated using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The mean concentration (measured in mg kg-1) of the PTMs in the soils was in the sequence Cr (81.77) > Pb(19.91) > As(13.23) > Cd(3.25), exceeding the WHO recommended values in all cases. This contamination was corroborated by the pollution evaluation indices. The concentrations (measured in mg l-1) of the PTMs in the irrigation water followed a similar pattern i.e. Cr(1.87) > Pb(1.65) > As(0.85) > Cd(0.20). All the PTMs being studied, were found in the vegetables with Cr (5.37 and 5.88) having the highest concentration, followed by Pb (3.57 and 4.33), and As (1.09 and 1.67), while Cd (0.48 and 1.04) had the lowest concentration (all measured in mg kg-1) for cabbage and spinach, respectively. The concentration of the toxic metals was higher in spinach than in cabbage, which may be due to the redistribution of the greater proportion of the metals above the ground tissue, caused by the bioavailability of metals in the aqueous phase. Expectedly, the hazard index (HI),and carcinogenic risk values of spinach were higher than that of cabbage. This implies that spinach poses potentially higher health risks. Similarly, the Monte Carlo simulation results reveal that the 5th percentile, 95th percentile, and 50th percentile of the cumulative probability of cancer risks due to the consumption of these vegetables exceeds the acceptable range of 1.00E-6 and 1.00E-4. Thus, the probable risk of a cancerous effect is high, and necessary remedial actions are recommended.


Asunto(s)
Arsénico , Brassica , Metales Pesados , Contaminantes del Suelo , Humanos , Verduras/química , Metales Pesados/análisis , Cadmio/toxicidad , Suelo/química , Método de Montecarlo , Plomo , Intoxicación por Metales Pesados , Arsénico/toxicidad , Cromo/toxicidad , Agua , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo/métodos , Monitoreo del Ambiente
8.
Rev Environ Contam Toxicol ; 213: 27-54, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21541847

RESUMEN

Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the organotins and the consequences of exposure to them are needed. In particular, we believe the following areas need attention: expanded toxicity testing in aquatic species, human exposure, human body burdens, and the research to identify biomarkers for testing the toxicity of the organotins to marine invertebrates.


Asunto(s)
Biomarcadores/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Compuestos Orgánicos de Estaño/análisis , Adsorción , Animales , Organismos Acuáticos/efectos de los fármacos , Biodegradación Ambiental , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Cadena Alimentaria , Sedimentos Geológicos/química , Humanos , Compuestos Orgánicos de Estaño/toxicidad , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Heliyon ; 7(9): e07961, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34553089

RESUMEN

This study reports a simple fabrication of polyethersulfone (PES)-based membranes, their characterisation, and application. These membranes are modified with hyperbranched polyethyleneimine (HPEI) and -silver (nAg)-decorated HPEI. These were then compared for filtration, organic fouling, antifouling, and antibacterial properties against the neat PES membrane. The fabricated membranes were characterised for their chemistry using attenuated transmission reflectance-equipped Fourier transform infrared spectroscopy (ATR-FTIR) and x-ray photoelectron spectroscopy (XPS). As such, the presence of HPEI interactions between the nAg and HPEI in the membranes was confirmed. An energy-dispersive x-ray detector coupled with a scanning electron microscopy (SEM-EDS) and atomic force microscopy (AFM) were used to study morphological, compositional, topographical, and topological changes to the membrane due to the modifications. A thermogravimetric analyser (TGA) was also utilised to evaluate the effect of modification on thermal stability of the resulting membranes. Optical contact angle (OCA) interrogated the extent of membrane/water interactions which indicated enhanced hydrophilicity due to the modification. Dead-end filtration using these membranes indicated enhanced pure water permeate fluxes and protein rejection (bovine serum albumin, BSA). The results of the BSA rejection for the HPEI/PES membranes were a maximum of 98% while those of the nAg@HPEI/PES ranged between 30-87%. The membranes possessed high flux recoveries, indicating great potential for the membranes for antifouling applications in water treatment. Extensive antibacterial studies were carried out on the membranes to probe bioactivity. Enhanced activity was recorded (except for neat PES) with zone inhibitions of up to 7 mm against five bacterial strains including E. Coli and K. Pneumoniae as found in several wastewater streams. The antibacterial properties of these membranes mean they can prolong membrane operational lifetime by mitigating biofilming during water treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA