Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38515319

RESUMEN

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Humanos , Ratas , Masculino , Animales , Levodopa/efectos adversos , Enfermedad de Parkinson/tratamiento farmacológico , Receptor del Glutamato Metabotropico 5 , Antiparkinsonianos/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/prevención & control , Discinesia Inducida por Medicamentos/metabolismo , Oxidopamina
2.
Mov Disord ; 37(10): 2075-2085, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894540

RESUMEN

BACKGROUND: The α-Synuclein (α-Syn) V15A variant has been found in two Caucasian families with Parkinson's disease (PD). However, the significance of this missense variant remained unclear. OBJECTIVE: We sought to elucidate whether V15A could increase aggregation or change phospholipid affinity. METHODS: A sequencing analysis for the SNCA encoding α-Syn from 875 patients with PD and 324 control subjects was performed. Comparing with known pathogenic missense variants of α-Syn, A30P, and A53T, we analyzed the effects of V15A on binding to phospholipid membrane, self-aggregation, and seed-dependent aggregation in cultured cells. RESULTS: Genetic screening identified SNCA c.44 T>C (p.V15A) from two Japanese PD families. The missense variant V15A was extremely rare in several public databases and predicted as pathogenic using in silico tools. The amplification activity of α-Syn V15A fibrils was stronger than that of wild-type α-Syn fibrils. CONCLUSIONS: The discovery of the V15A variant from Japanese families reinforces the possibility that the V15A variant may be a causative variant for developing PD. V15A had a reduced affinity for phospholipids and increased propagation activity compared with wild-type. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Línea Celular , Mutación Missense , Enfermedad de Parkinson/metabolismo , Fosfolípidos
3.
Proc Natl Acad Sci U S A ; 116(41): 20689-20699, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548400

RESUMEN

Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson's disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA-deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria-ER contact site-resident protein C19orf12 in iPLA2-VIA-deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.


Asunto(s)
Encéfalo/patología , Membrana Celular/patología , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/química , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Membrana Celular/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Estrés del Retículo Endoplásmico , Femenino , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo X/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfolípidos/metabolismo , Transmisión Sináptica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
Hum Mol Genet ; 28(23): 3895-3911, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31600778

RESUMEN

Mutations in CHCHD2 are linked to a familial, autosomal dominant form of Parkinson's disease (PD). The gene product may regulate mitochondrial respiratory function. However, whether mitochondrial dysfunction induced by CHCHD2 mutations further yields α-synuclein pathology is unclear. Here, we provide compelling genetic evidence that mitochondrial dysfunction induced by PD-linked CHCHD2 T61I mutation promotes α-synuclein aggregation using brain autopsy, induced pluripotent stem cells (iPSCs) and Drosophila genetics. An autopsy of an individual with CHCHD2 T61I revealed widespread Lewy pathology with both amyloid plaques and neurofibrillary tangles that appeared in the brain stem, limbic regions and neocortex. A prominent accumulation of sarkosyl-insoluble α-synuclein aggregates, the extent of which was comparable to that of a case with α-synuclein (SNCA) duplication, was observed in CHCHD2 T61I brain tissue. The prion-like activity and morphology of α-synuclein fibrils from the CHCHD2 T61I brain tissue were similar to those of fibrils from SNCA duplication and sporadic PD brain tissues. α-Synuclein insolubilization was reproduced in dopaminergic neuron cultures from CHCHD2 T61I iPSCs and Drosophila lacking the CHCHD2 ortholog or expressing the human CHCHD2 T61I. Moreover, the combination of ectopic α-synuclein expression and CHCHD2 null or T61I enhanced the toxicity in Drosophila dopaminergic neurons, altering the proteolysis pathways. Furthermore, CHCHD2 T61I lost its mitochondrial localization by α-synuclein in Drosophila. The mislocalization of CHCHD2 T61I was also observed in the patient brain. Our study suggests that CHCHD2 is a significant mitochondrial factor that determines α-synuclein stability in the etiology of PD.


Asunto(s)
Proteínas de Unión al ADN/genética , Mutación con Pérdida de Función , Enfermedad de Parkinson/genética , Factores de Transcripción/genética , alfa-Sinucleína/química , Anciano , Animales , Autopsia , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Drosophila , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Neuronas/citología , Enfermedad de Parkinson/metabolismo , Linaje , Agregado de Proteínas , Estabilidad Proteica , Factores de Transcripción/metabolismo
5.
Brain ; 143(4): 1190-1205, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32201884

RESUMEN

Recently, the genetic variability in lysosomal storage disorders has been implicated in the pathogenesis of Parkinson's disease. Here, we found that variants in prosaposin (PSAP), a rare causative gene of various types of lysosomal storage disorders, are linked to Parkinson's disease. Genetic mutation screening revealed three pathogenic mutations in the saposin D domain of PSAP from three families with autosomal dominant Parkinson's disease. Whole-exome sequencing revealed no other variants in previously identified Parkinson's disease-causing or lysosomal storage disorder-causing genes. A case-control association study found two variants in the intronic regions of the PSAP saposin D domain (rs4747203 and rs885828) in sporadic Parkinson's disease had significantly higher allele frequencies in a combined cohort of Japan and Taiwan. We found the abnormal accumulation of autophagic vacuoles, impaired autophagic flux, altered intracellular localization of prosaposin, and an aggregation of α-synuclein in patient-derived skin fibroblasts or induced pluripotent stem cell-derived dopaminergic neurons. In mice, a Psap saposin D mutation caused progressive motor decline and dopaminergic neurodegeneration. Our data provide novel genetic evidence for the involvement of the PSAP saposin D domain in Parkinson's disease.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Saposinas/genética , Anciano , Animales , Estudios de Casos y Controles , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Persona de Mediana Edad , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología
6.
Biochem Biophys Res Commun ; 522(3): 655-661, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31785806

RESUMEN

Many pathological proteins related to neurodegenerative diseases are misfolded, aggregating to form amyloid fibrils during pathogenesis. One of the pathological proteins, alpha-synuclein (α-syn), accumulates in the brains of Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), which are designated as synucleinopathies. Recently, structural properties of abnormal accumulated proteins are suggested to determine the disease phenotype. However, the biochemical and structural characteristics of those accumulated proteins are still poorly understood. We previously reported the sequence and seed-structure-dependent polymorphic fibrils of α-syn and the polymorphism was identified by proteinase K-resistant cores determined by mass spectrometry (MS) analysis. In this study, we applied this method to analyze α-syn aggregates of MSA and DLB. To perform MS analysis on proteinase K-resistant cores, we first performed amplification of α-syn aggregates by seeding reaction and protein misfolding cyclic amplification (PMCA) to obtain a sufficient amount of aggregates. Using SDS insoluble fraction of the disease brain, we successfully amplified enough α-syn aggregates for MS analysis. We differentiated between mouse and human α-syn aggregates by MS analysis on proteinase K-resistant cores of the aggregates before and after amplification. The results suggest that structural properties of amplified α-syn fibrils are preserved after PMCA and these methods can be applicable in the study of pathological proteins of the neurodegenerative disorders.


Asunto(s)
Endopeptidasa K/metabolismo , Agregación Patológica de Proteínas/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Animales , Encéfalo/metabolismo , Encéfalo/patología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Agregado de Proteínas , Agregación Patológica de Proteínas/patología , Sinucleinopatías/patología
7.
Mov Disord ; 35(8): 1438-1447, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32357260

RESUMEN

OBJECTIVE: The objective of this study was to determine comprehensive metabolic changes of caffeine in the serum of patients with parkinsonian disorders including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) and to compare this with healthy control serum. METHODS: Serum levels of caffeine and its 11 downstream metabolites from independent double cohorts consisting of PD (n = 111, 160), PSP (n = 30, 19), MSA (n = 23, 17), and healthy controls (n = 43, 31) were examined by liquid chromatography-mass spectrometry. The association of each metabolite with clinical parameters and medication was investigated. Mutations in caffeine-associated genes were investigated by direct sequencing. RESULTS: A total of 9 metabolites detected in more than 50% of participants in both cohorts were decreased in 3 parkinsonian disorders compared with healthy controls without any significant association with age at sampling, sex, or disease severity (Hoehn and Yahr stage and Unified Parkinson's Disease Rating Scale motor section) in PD, and levodopa dose or levodopa equivalent dose in PSP and MSA. Of the 9 detected metabolites, 8 in PD, 5 in PSP, and 3 in MSA were significantly decreased in both cohorts even after normalizing to daily caffeine consumption. No significant genetic variations in CYP1A2 or CYP2E1 were detected when compared with controls. CONCLUSION: Serum caffeine metabolic profiles in 3 parkinsonian diseases show a high level of overlap, indicative of a common potential mechanism such as caffeine malabsorption from the small intestine, hypermetabolism, increased clearance of caffeine, and/or reduced caffeine consumption. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Cafeína , Humanos , Metaboloma , Atrofia de Múltiples Sistemas/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico
8.
Mov Disord ; 33(9): 1488-1492, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29756366

RESUMEN

Background Nigral degeneration patterns differ between PSP and PD. However, the relationship between nigral degeneration and midbrain atrophy in PSP remains unclear. Objective We analyzed differences and relationships between nigral degeneration and midbrain atrophy in PSP and PD. Methods Neuromelanin-sensitive MRI and midbrain volumetry were performed in 11 PSP patients, 24 PD patients, and 10 controls to measure the neuromelanin-sensitive SNpc area and midbrain volume. Results The neuromelanin-sensitive SNpc area and midbrain volume were significantly smaller in PSP patients compared with PD patients and controls. Motor deficits were inversely correlated with neuromelanin-sensitive SNpc area in PD, but not PSP patients. There was no significant correlation between neuromelanin-sensitive SNpc area and midbrain volume in either disease group. Midbrain volumetry discriminated PSP from PD. Diagnostic accuracy was improved when neuromelanin-sensitive MRI analysis was added. Conclusions Neuromelanin-sensitive MRI and midbrain volumetry may reflect the clinical and pathological characteristics of PSP and PD. Combining neuromelanin-sensitive MRI and midbrain volumetry may be useful for differentiating PSP from PD. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Melaninas/metabolismo , Mesencéfalo/diagnóstico por imagen , Mesencéfalo/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Curva ROC , Índice de Severidad de la Enfermedad , Sustancia Negra/diagnóstico por imagen , Sustancia Negra/metabolismo
9.
Hum Brain Mapp ; 38(7): 3704-3722, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28470878

RESUMEN

Mapping gray matter (GM) pathology in Parkinson's disease (PD) with conventional MRI is challenging, and the need for more sensitive brain imaging techniques is essential to facilitate early diagnosis and assessment of disease severity. GM microstructure was assessed with GM-based spatial statistics applied to diffusion kurtosis imaging (DKI) and neurite orientation dispersion imaging (NODDI) in 30 participants with PD and 28 age- and gender-matched controls. These were compared with currently used assessment methods such as diffusion tensor imaging (DTI), voxel-based morphometry (VBM), and surface-based cortical thickness analysis. Linear discriminant analysis (LDA) was also used to test whether subject diagnosis could be predicted based on a linear combination of regional diffusion metrics. Significant differences in GM microstructure were observed in the striatum and the frontal, temporal, limbic, and paralimbic areas in PD patients using DKI and NODDI. Significant correlations between motor deficits and GM microstructure were also noted in these areas. Traditional VBM and surface-based cortical thickness analyses failed to detect any GM differences. LDA indicated that mean kurtosis (MK) and intra cellular volume fraction (ICVF) were the most accurate predictors of diagnostic status. In conclusion, DKI and NODDI can detect cerebral GM abnormalities in PD in a more sensitive manner when compared with conventional methods. Hence, these methods may be useful for the diagnosis of PD and assessment of motor deficits. Hum Brain Mapp 38:3704-3722, 2017. © 2017 Wiley Periodicals, Inc.

10.
J Neural Transm (Vienna) ; 124(4): 407-415, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28160151

RESUMEN

Parkinson's disease (PD) is caused by the loss of dopaminergic neurons. Recently, specific T1-weighted magnetic resonance imaging (MRI) at 3 Tesla was reported to visualize neuromelanin (NM)-related contrast of dopaminergic neurons. Using NM-MRI, we analyzed whether disease severity and motor complications (MC) are associated with the degree of dopaminergic neuronal degeneration in the substantia nigra pars compacta (SNc) in patients with idiopathic PD (PD) and PARK2. We examined 27 individuals with PD, 11 with PARK2, and a control group of 18. A 3T MRI was used to obtain a modified NM-sensitive T1-weighted fast-spin echo sequence. The size of the SNc was determined as the number of pixels with signal intensity higher than background signal intensity +2 standard deviations. NM-MRI indicated that the T1 hyperintense area in the SNc in patients with PD and PARK2 was significantly smaller than that in control subjects. When compared with the PD group without MC, both PD with MC and PARK2 showed a markedly smaller size of NM-rich SNc area. Receiver operating characteristic curve analysis revealed a sensitivity of 86.96% and a specificity of 100% in discriminating between patients with and without MC (area under the curve = 0.98). Correlation analysis between the T1 hyperintense SNc area and L-dopa and L-dopa equivalent dose demonstrated a significant negative correlation. The association between a reducing SNc NM-rich area and MC with increasing dopaminergic medication dose suggests that NM-MRI findings might be a useful tool for monitoring the development of MC in PD and PARK2.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Melaninas , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/fisiopatología , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Antiparkinsonianos/uso terapéutico , Área Bajo la Curva , Estudios de Cohortes , Neuronas Dopaminérgicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Curva ROC , Ubiquitina-Proteína Ligasas/genética
11.
J Neurol Neurosurg Psychiatry ; 87(3): 295-301, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25795009

RESUMEN

OBJECTIVE: The pathogenesis of Parkinson's disease (PD) involves complex interactions between environmental and genetic factors. Metabolomics can shed light on alterations in metabolic pathways in many diseases, including neurodegenerative diseases. In the present study, we attempted to elucidate the candidate metabolic pathway(s) associated with PD. METHODS: Serum samples were collected from 35 individuals with idiopathic PD without dementia and 15 healthy age-matched control participants without PD. This analysis used a combination of three independent platforms: ultrahigh-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) optimised for basic species, UPLC/MS/MS optimised for acidic species and gas chromatography/MS (GC/MS). RESULTS: The metabolomic profiles of PD were clearly different from normal controls. PD profiles had significantly lower levels of tryptophan, caffeine and its metabolites, bilirubin and ergothioneine, and significantly higher levels of levodopa metabolites and biliverdin than those of normal controls. Alterations in the bilirubin/biliverdin ratio and ergothioneine can indicate oxidative stress intensity and may suggest elevated oxidative stress and/or insufficient ability for scavenging free radicals, which could contribute to PD pathogenesis. Decreased serum tryptophan level is associated with psychiatric problems in PD. A decrease in serum caffeine levels is consistent with an inverse association of caffeine consumption with development of PD based on past epidemiological studies. CONCLUSIONS: Metabolomic analysis detected biomarkers associated with PD pathogenesis and disease progression. Since critical metabolic biomarkers need to be identified in PD, future studies should include assay validation and replication in independent cohorts.


Asunto(s)
Biomarcadores/sangre , Metabolómica , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/metabolismo , Transducción de Señal , Anciano , Estudios de Casos y Controles , Humanos , Masculino
12.
Eur Radiol ; 26(8): 2567-77, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26515546

RESUMEN

OBJECTIVES: We used neurite orientation dispersion and density imaging (NODDI) to quantify changes in the substantia nigra pars compacta (SNpc) and striatum in Parkinson disease (PD). METHODS: Diffusion-weighted magnetic resonance images were acquired from 58 PD patients and 36 age- and sex-matched controls. The intracellular volume fraction (Vic), orientation dispersion index (OD), and isotropic volume fraction (Viso) of the basal ganglia were compared between groups. Multivariate logistic regression analysis determined which diffusion parameters were independent predictors of PD. Receiver operating characteristic (ROC) analysis compared the diagnostic accuracies of the evaluated indices. Pearson coefficient analysis correlated each diffusional parameter with disease severity. RESULTS: Vic in the contralateral SNpc and putamen were significantly lower in PD patients than in healthy controls (P < 0.00058). Vic and OD in the SNpc and putamen showed significant negative correlations (P < 0.05) with disease severity. Multivariate logistic analysis revealed that Vic (P = 0.0000046) and mean diffusivity (P = 0.019) in the contralateral SNpc were the independent predictors of PD. In the ROC analysis, Vic in the contralateral SNpc showed the best diagnostic performance (mean cutoff, 0.62; sensitivity, 0.88; specificity, 0.83). CONCLUSION: NODDI is likely to be useful for diagnosing PD and assessing its progression. KEY POINTS: • Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI technique • NODDI estimates neurite microstructure more specifically than diffusion tensor imaging • By using NODDI, nigrostriatal alterations in PD can be evaluated in vivo • NOODI is useful for diagnosing PD and assessing its disease progression.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Neuritas/patología , Enfermedad de Parkinson/diagnóstico , Sustancia Negra/diagnóstico por imagen , Anciano , Ganglios Basales/diagnóstico por imagen , Femenino , Humanos , Masculino
13.
Brain Nerve ; 76(6): 767-772, 2024 Jun.
Artículo en Japonés | MEDLINE | ID: mdl-38853507

RESUMEN

The aggregation of α-synuclein (α-syn), associated with Parkinson's disease (PD) extends from the peripheral autonomic nervous system to the cerebral cortex, indicating a neural circuit-based mechanism of spread. However, recent studies, have proposed alternative propagation routes beyond neural pathways, including transmission via bodily fluids, such as the blood. This notion expands our understanding of PD progression, underscoring the complexity of α-syn spread and its implications in disease management and therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatías/metabolismo , Enfermedad de Parkinson/metabolismo , Animales
14.
J Mov Disord ; 17(2): 127-137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589016

RESUMEN

Mutations in the SNCA gene, which encodes α-synuclein (α-syn), play a key role in the development of genetic Parkinson's disease (PD). α-Syn is a major component of Lewy bodies in PD and glial cytoplasmic inclusions in multiple system atrophy (MSA). Rapid eye movement sleep behavior disorder patients often progress to PD, dementia with Lewy bodies, or MSA, which are collectively known as α-synucleinopathies. The loss of dopaminergic neurons with Lewy bodies precedes motor dysfunction in these diseases, but the mechanisms of neurodegeneration due to α-syn aggregation are poorly understood. Monitoring α-syn aggregation in vivo could serve as a diagnostic biomarker and help elucidate pathogenesis, necessitating a simple and accurate detection method. Seed amplification assays (SAAs), such as real-time quaking-induced conversion and protein misfolding cyclic amplification, are used to detect small amounts of abnormally structured α-syn protofibrils, which are central to aggregation. These methods are promising for the early diagnosis of α-synucleinopathy. Differences in α-syn filament structures between α-synucleinopathies, as observed through transmission electron microscopy and cryo-electron microscopy, suggest their role in the pathogenesis of neurodegeneration. SAAs may differentiate between subtypes of α-synucleinopathy and other diseases. Efforts are also being made to identify α-syn from blood using various methods. This review introduces body fluid α-syn biomarkers based on pathogenic α-syn seeds, which are expected to redefine α-synucleinopathy diagnosis and staging, improving clinical research accuracy and facilitating biomarker development.

15.
Stem Cell Res ; 76: 103323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309147

RESUMEN

PARK2 is the most common autosomal recessive form of Parkinson's disease and is caused by mutations in parkin that result in early-onset loss of dopaminergic neurons in the substantia nigra. In this study, we established an induced pluripotent stem cell (iPSC) line from a patient harboring a homozygous exon 3 deletion in PARK2. The established iPSCs showed pluripotency, the capacity to differentiate into the three germ layers, and normal karyotypes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Mov Disord Clin Pract ; 11(4): 352-362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38264844

RESUMEN

BACKGROUND: Chronic constipation is a common digestive complication of Parkinson's disease (PD). OBJECTIVES: To verify the usefulness of elobixibat, an ileal bile acid transporter inhibitor, for chronic constipation in PD. METHODS: This double-blind, placebo-controlled study consisted of a 2-week observation/washout period and a 4-week treatment period. All patients received a Bowel Movement Diary at Week -2 and were allocated to elobixibat (10 mg) or placebo at Week 0. Patients visited at Weeks 2 and 4 to report daily spontaneous bowel movements (SBM), stool form, drug use, quality of life (QOL), and safety. Changes in these parameters were assessed. RESULTS: The study included 38 patients in the elobixibat group and 39 in the placebo group, and 37 each completed the study. SBM frequency/week (mean ± standard deviation) increased significantly from 4.2 ± 2.6 at baseline to 5.9 ± 3.2 at Week 4 in the elobixibat group (P = 0.0079), but not in the placebo group (4.5 ± 2.7 to 5.3 ± 3.5; P = 0.0889). On analysis of covariance, the between-group difference in frequency changes at Week 4 (primary endpoint) was not significant after adjustment by baseline and sex (point estimate = 0.8; 95% confidence interval = -0.57 to 2.09, P = 0.2601), although a significant difference (P = 0.0011) was evidenced at Week 1 by a similar analysis. Stool form and scores of satisfaction and stigma were improved by elobixibat. Adverse events were as previously reported. CONCLUSIONS: Elobixibat improved the SBM frequency, though the defined primary endpoint was not evidenced. QOL parameters (stool consistency and treatment satisfaction) were also improved. Elobixibat may have therapeutic benefits in PD patients suffering from chronic constipation. TRIAL REGISTRATION INFORMATION: Trial Registration Number: JPRN-jRCTs031200172 (submitted: October 26, 2020; first patient enrolment: December 23, 2020; https://jrct.niph.go.jp/en-latest-detail/jRCTs031200172).


Asunto(s)
Dipéptidos , Enfermedades Gastrointestinales , Enfermedad de Parkinson , Tiazepinas , Humanos , Enfermedad Crónica , Estreñimiento/tratamiento farmacológico , Enfermedad de Parkinson/complicaciones , Calidad de Vida , Método Doble Ciego
17.
Cerebrovasc Dis ; 35(3): 282-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23594963

RESUMEN

BACKGROUND: Mobile or ulcerated aortic plaques (MUAPs) on transesophageal echocardiography (TEE) can cause aortogenic brain embolism. Aortic arch calcification (AoAC) on chest X-ray represents systemic atherosclerosis. This study focused on AoAC on chest X-ray and its link with atheromatous aortic plaques (AAPs) on TEE in stroke patients. The aim of the present study was to assess the relationship between AoAC and AAPs in unexplained stroke patients. METHODS: A total of 178 patients (mean age: 64 ± 15 years; 115 males) with ischemic stroke who underwent TEE were enrolled. The patients were classified based on TEE findings: (1) AAPs <4 mm; (2) AAPs ≥4 mm, and (3) MUAPs. The extent of AoAC on chest X-ray was divided into 4 grades (0-3). Clinical characteristics including AoAC were compared among the 3 groups. Multiple logistic regression analysis was performed to identify the independent factors associated with MUAPs. An original diagnostic criterion was defined as a potential indicator of MUAPs in unexplained stroke patients. RESULTS: 104 (58%) patients had AAPs <4 mm, 46 (26%) had AAPs ≥4 mm, and 28 (16%) had MUAPs. Older age (OR: 1.14; 95% CI: 1.06-1.24; p = 0.001), AoAC (OR: 2.35; 95% CI: 1.30-4.24; p = 0.005), and multiple infarctions in multiple vascular territories (VTs) demonstrated on diffusion-weighted imaging (DWI) (OR: 2.58; 95% CI: 1.35-4.92; p = 0.004) were independently associated with MUAPs. The CAM score was defined as consisting of the degree of AoAC (0-3 points), age (≥70 years: 1 point), and DWI findings (multiple infarctions in 1 VT: 1 point; 2 VTs: 2 points; more than 3 VTs: 3 points). The prevalence of MUAPs was substantially increased in patients with medium risk (CAM score 3-4, OR: 7.68; 95% CI: 2.89-20.44; p < 0.001) and high risk (CAM score 5-7, OR: 20.63; 95% CI: 5.12-83.06; p < 0.001). CONCLUSIONS: Older age, advanced AoAC, and multiple infarctions in multiple VTs are associated with aortogenic brain embolism. The CAM score can be useful for the diagnosis of aortogenic brain embolism.


Asunto(s)
Enfermedades de la Aorta/complicaciones , Isquemia Encefálica/etiología , Embolia Intracraneal/complicaciones , Accidente Cerebrovascular/etiología , Calcificación Vascular/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Aterosclerosis/complicaciones , Aterosclerosis/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Ecocardiografía Transesofágica/métodos , Femenino , Humanos , Embolia Intracraneal/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Radiografía , Factores de Riesgo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Calcificación Vascular/diagnóstico por imagen
18.
Nat Med ; 29(6): 1448-1455, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248302

RESUMEN

Abnormal α-synuclein aggregation is a key pathological feature of a group of neurodegenerative diseases known as synucleinopathies, which include Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy (MSA). The pathogenic ß-sheet seed conformation of α-synuclein is found in various tissues, suggesting potential as a biomarker, but few studies have been able to reliably detect these seeds in serum samples. In this study, we developed a modified assay system, called immunoprecipitation-based real-time quaking-induced conversion (IP/RT-QuIC), which enables the detection of pathogenic α-synuclein seeds in the serum of individuals with synucleinopathies. In our internal first and second cohorts, IP/RT-QuIC showed high diagnostic performance for differentiating PD versus controls (area under the curve (AUC): 0.96 (95% confidence interval (CI) 0.95-0.99)/AUC: 0.93 (95% CI 0.84-1.00)) and MSA versus controls (AUC: 0.64 (95% CI 0.49-0.79)/AUC: 0.73 (95% CI 0.49-0.98)). IP/RT-QuIC also showed high diagnostic performance in differentiating individuals with PD (AUC: 0.86 (95% CI 0.74-0.99)) and MSA (AUC: 0.80 (95% CI 0.65-0.97)) from controls in a blinded external cohort. Notably, amplified seeds maintained disease-specific properties, allowing the differentiation of samples from individuals with PD versus MSA. In summary, here we present a novel platform that may allow the detection of individuals with synucleinopathies using serum samples.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinucleinopatías/patología , Enfermedad de Parkinson/diagnóstico , Atrofia de Múltiples Sistemas/diagnóstico , Biomarcadores , Enfermedad por Cuerpos de Lewy/diagnóstico
19.
Commun Biol ; 5(1): 636, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768587

RESUMEN

Synucleinopathies are neurodegenerative disorders including Parkinson disease (PD), dementia with Lewy body (DLB), and multiple system atrophy (MSA) that involve deposits of the protein alpha-synuclein (α-syn) in the brain. The inoculation of α-syn aggregates derived from synucleinopathy or preformed fibrils (PFF) formed in vitro induces misfolding and deposition of endogenous α-syn. This is referred to as prion-like transmission, and the mechanism is still unknown. In this study, we label α-syn PFF with quantum dots and visualize their movement directly in acute slices of brain tissue inoculated with α-syn PFF seeds. Using this system, we find that the trafficking of α-syn seeds is dependent on fast axonal transport and the seed spreading is dependent on endocytosis and neuronal activity. We also observe pharmacological effects on α-syn seed spreading; clinically available drugs including riluzole are effective in reducing the spread of α-syn seeds and this effect is also observed in vivo. Our quantum-dot-labeled α-syn seed assay system combined with in vivo transmission experiment reveals an early phase of transmission, in which uptake and spreading of seeds occur depending on neuronal activity, and a later phase, in which seeds induce the propagation of endogenous misfolded α-syn.


Asunto(s)
Enfermedad de Parkinson , Priones , Puntos Cuánticos , Sinucleinopatías , Encéfalo/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo
20.
J Neurol ; 269(4): 2022-2029, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34468800

RESUMEN

OBJECTIVE: This study aimed to determine the prevalence and clinical features of Parkinson's disease (PD)/PD dementia (PD/PDD) or dementia with Lewy bodies (DLB) in idiopathic normal pressure hydrocephalus (iNPH). METHODS: Patients with iNPH who were admitted to the Department of Neurology, Juntendo University School of Medicine over the past 10 years have been retrospectively analyzed. The diagnosis of iNPH and concomitant PD/PDD or DLB was established using diagnostic criteria. Motor symptoms were assessed by the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III. 123I-ioflupane single-photon emission computed tomography (DaT-SPECT) and cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC)-based assay were performed for alpha synuclein aggregation. RESULTS: Overall, 79 patients met the criteria for iNPH, of which 34 developed iNPH without accompanying disorders (iNPHa; 43%), 23 developed iNPH with comorbid PD/PDD (iNPHc + PD/PDD; 29.1%), and 8 developed iNPH with comorbid DLB (iNPHc + DLB; 10.1%). Significant differences in facial expansion and upper-limb parkinsonism were observed with a comorbidity of either PD/PDD or DLB. The specific binding ratio (SBR) of DaTscan was reduced in iNPHa (p = 0.02), but it reduced further with comorbid PD/PDD (p < 0.01) or DLB (p < 0.01). RT-QuIC was positive for all 13 comorbid PD/PDD and negative for all 19 iNPHa. CONCLUSION: These results highlight that synucleinopathies coexist with iNPH. These can be differentiated by performing DaTscan and RT-QuIC, which can affect its clinical features.


Asunto(s)
Hidrocéfalo Normotenso , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Comorbilidad , Humanos , Hidrocéfalo Normotenso/complicaciones , Hidrocéfalo Normotenso/diagnóstico por imagen , Hidrocéfalo Normotenso/epidemiología , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/epidemiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/epidemiología , Estudios Retrospectivos , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA