RESUMEN
Plant species occupy distinct niches along a nitrogen-to-phosphorus (N:P) gradient, yet there is no general framework for belowground nutrient acquisition traits in relation to N or P limitation. We retrieved several belowground traits from databases, placed them in the "root economics space" framework, and linked these to a dataset of 991 plots in Eurasian herbaceous plant communities, containing plant species composition, aboveground community biomass and tissue N and P concentrations. Our results support that under increasing N:P ratio, belowground nutrient acquisition strategies shift from "fast" to "slow" and from "do-it-yourself" to "outsourcing", with alternative "do-it-yourself" to "outsourcing" strategies at both ends of the spectrum. Species' mycorrhizal capacity patterns conflicted with root economics space predictions based on root diameter, suggesting evolutionary development of alternative strategies under P limitation. Further insight into belowground strategies along nutrient stoichiometry is crucial for understanding the high abundance of threatened plant species under P limitation.
Asunto(s)
Micorrizas , Plantas , Biomasa , Nitrógeno , Nutrientes , Suelo , Raíces de PlantasRESUMEN
Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.
Asunto(s)
Pradera , Suelo , Biomasa , Carbono , Ecosistema , Micronutrientes , Nitrógeno/análisisRESUMEN
The dung microbiome is a complex system that is highly influenced by species and diet. This study characterized the dung bacterial and fungal communities of five herbivore species inhabiting the National Park Zuid-Kennemerland, the Netherlands. The five selected herbivore species were rabbit (Oryctolagus cuniculus L.), cow (Bos taurus L.), horse (Equus ferus caballus L.), fallow deer (Dama dama L.), and European bison (Bison bonasus L.). We explored the effects of distinct digestive physiology (ruminants vs. non-ruminants) and diverse dietary preferences on the microbial community composition of herbivore dung. Firmicutes and Bacteroidetes were dominant bacterial phyla in the dung of all five herbivore species, and Ascomycota was the predominant fungal phylum. Verrucomicrobiota and Mucoromycota were more present in horse dung and Proteobacteria were more abundant in rabbit dung than the three ruminant dung types. There were few significant differences in the microbial community structure among the three ruminant dung types. The alpha and beta diversity of dung microbial communities significantly differed between ruminants and non-ruminants, especially in bacterial communities. Based on MetaCyc pathways, we found that the primary functions of bacteria in herbivore dung were focused on biosynthesis, various super pathways, and degradation, with a few differences between ruminant and non-ruminant dung. FUNGuild analysis showed that horse dung had more saprotrophic fungi, while the fungi in fallow deer dung had more symbiotrophic properties, with the fungal functions of bison, cow, and rabbit dung somewhere in between. There was also a correlation between microbial community and nutrient composition of the substrate in herbivore dung. Understanding the dung microbial community composition of these herbivore species can enrich the database of mammalian gut microbiomes for studying the mechanisms of microbial community variation while preparing for exploring a new perspective to study the impact of herbivores on ecosystems through dung deposition.
RESUMEN
BACKGROUND: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. RESULTS: We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. CONCLUSIONS: We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.
Asunto(s)
Agua Subterránea , Metano/química , Plantas/metabolismo , Suelo/química , Humedales , Atmósfera/química , Biomasa , Ecología/métodosRESUMEN
Global change drivers such as eutrophication and plant invasions will create novel environments for many plant species. Through adaptive trait plasticity plants may maintain their performance under these novel conditions and may outcompete those showing low-adaptive trait plasticity. In a greenhouse study, we determined if plasticity in traits is adaptive or maladaptive in endangered, nonendangered, and invasive plant species in response to variation of nitrogen (N) and phosphorus (P) availability (N:P ratios 1.7, 15, and 135) and whether plastic trait responses are adaptive and/or costly for fitness (i.e., biomass). Species choice comprised 17 species from three functional groups (legumes, nonlegume forbs, and grasses), either classified as endangered, nonendangered, or invasive. After 2 months, plants were harvested and nine traits related to carbon assimilation and nutrient uptake were measured (leaf area, SLA, LDMC, SPAD, RMR, root length, SRL, root surface area, and PME activity). We found more traits responding plastically to variation in P than in N. Plasticity only created costs when P was varied. Plasticity in traits was mostly adaptively neutral toward fitness, with plasticity in three traits being similarly adaptive across all species groups: SPAD (as a measure of chlorophyll content, adaptive to N and P limitation), leaf area, and root surface area (adaptive to P limitation). We found little differences in trait plasticity between endangered, nonendangered, and invasive species. Synthesis. Along a gradient from N limitation, balanced N:P supply, and P limitation, we found that the type of fluctuating nutrient (i.e., if N or P is varied) is decisive for the adaptive value of a trait. Variation in P availability (from balanced supply to P limitation) created both a stronger reduction in fitness as well as created plasticity costs in more traits than variation in N availability (from balanced supply to N limitation). However, the patterns observed in our study may change if nutrient availability is altered, either by nutrient inputs or by a shift in nutrient availabilities, for example, by decreasing N input as foreseen by European Legislation, but without simultaneously decreasing P input.
RESUMEN
Plant-soil feedbacks (PSFs) are suggested to be major drivers of plant species coexistence and exotic invasions in natural plant communities, where species with more positive PSFs are thought to be more abundant in communities. Most evidence for this comes from mesocosm experiments with single species, but whether the results are transposable to diverse plant communities is mostly not verified and remains debated. We performed a combined monoculture and community experiment to test whether PSFs in monocultures predict PSFs in communities, and to infer the role of PSFs in invasive plant success. We found that (1) PSFs from monocultures were poor predictors for PSFs in plant communities, (2) competitive strength of invasive species did not consistently depend on PSF, and (3) dominant species experienced a significantly stronger negative PSFs than non-dominant species when grown in community. Hence, PSFs of plant species in monocultures seem less predictive for their abundance in plant communities or for invasibility than previously assumed. Nevertheless, PSF-and particularly negative PSF-seems indeed a major driver of plant species coexistence, with a strong species-specific pathogenic effect on dominant plants facilitating the persistence of rare species.
RESUMEN
Nitrogen (N) deposition has increased substantially since the second half of the 20th century due to human activities. This increase of reactive N into the biosphere has major implications for ecosystem functioning, including primary production, soil and water chemistry and producer community structure and diversity. Increased N deposition is also linked to the decline of insects observed over recent decades. However, we currently lack a mechanistic understanding of the effects of high N deposition on individual fitness, species richness and community structure of both invertebrate and vertebrate consumers. Here, we review the effects of N deposition on producer-consumer interactions, focusing on five existing ecological frameworks: C:N:P ecological stoichiometry, trace element ecological stoichiometry, nutritional geometry, essential micronutrients and allelochemicals. We link reported N deposition-mediated changes in producer quality to life-history strategies and traits of consumers, to gain a mechanistic understanding of the direction of response in consumers. We conclude that high N deposition influences producer quality via eutrophication and acidification pathways. This makes oligotrophic poorly buffered ecosystems most vulnerable to significant changes in producer quality. Changes in producer quality between the reviewed frameworks are often interlinked, complicating predictions of the effects of high N deposition on producer quality. The degree and direction of fitness responses of consumers to changes in producer quality varies among species but can be explained by differences in life-history traits and strategies, particularly those affecting species nutrient intake regulation, mobility, relative growth rate, host-plant specialisation, ontogeny and physiology. To increase our understanding of the effects of N deposition on these complex mechanisms, the inclusion of life-history traits of consumer species in future study designs is pivotal. Based on the reviewed literature, we formulate five hypotheses on the mechanisms underlying the effects of high N deposition on consumers, by linking effects of nutritional ecological frameworks to life-history strategies. Importantly, we expect that N-deposition-mediated changes in producer quality will result in a net decrease in consumer community as well as functional diversity. Moreover, we anticipate an increased risk of outbreak events of a small subset of generalist species, with concomitant declines in a multitude of specialist species. Overall, linking ecological frameworks with consumer life-history strategies provides a mechanistic understanding of the impacts of high N deposition on producer-consumer interactions, which can inform management towards more effective mitigation strategies.
Asunto(s)
Ecosistema , Nitrógeno , Animales , Humanos , Invertebrados , Plantas , HomeostasisRESUMEN
Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.
Asunto(s)
Pradera , Herbivoria , Animales , Banco de Semillas , Suelo , Plantas , Nutrientes , Ecosistema , MamíferosRESUMEN
Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.
Asunto(s)
Biodiversidad , Herbivoria , Animales , Mamíferos , Plantas , SueloRESUMEN
⢠Exotic plant invasions can alter ecosystem processes, particularly if the invasive species are functionally different from native species. We investigated whether such alterations can be explained by differences in functional traits between native and invasive plants of the same functional group or by differences in functional group affiliation. ⢠We compared six invasive forbs in Europe with six native forbs and six native graminoids in leaf and whole-plant traits, plasticity in response to nutrient supply and interspecific competition, litter decomposition rate, effects on soil nutrient availability, and allelopathy. All traits were measured in a series of pot experiments, and leaf traits additionally in the field. ⢠Invasive forbs differed from native forbs for only a few traits; they had less leaf chlorophyll and lower phosphorus (P) uptake from soil, but they tended to have a stronger allelopathic effect. The invasive forbs differed in many traits from the native graminoids, their leaves had lower tissue densities and a shorter life span, their litter decomposed faster and they had a lower nitrogen-use efficiency. ⢠Our results suggest that invasive forbs have the potential to alter ecosystem properties when invading graminoid-dominated and displacing native graminoids but not when displacing native forbs.
Asunto(s)
Clorofila/metabolismo , Ecosistema , Especies Introducidas , Magnoliopsida , Nitrógeno/metabolismo , Fósforo/metabolismo , Hojas de la Planta , Europa (Continente) , Magnoliopsida/anatomía & histología , Magnoliopsida/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Suelo , Estrés FisiológicoRESUMEN
Nutrients are known to limit productivity of plant communities around the world. In the Brazilian Cerrado, indirect evidences point to phosphorus as the main limiting nutrient, but some fertilization experiments suggest that one or more micronutrients might play this role. Boron is one of the essential micronutrients for plants. Agronomically, it received some attention, but it has mostly been neglected in ecological studies assessing the effects of nutrients on plant growth. Through field fertilization and mesocosm experiments in a degraded area in the Cerrado, we show that boron addition increased biomass production of herbaceous vegetation. This could be related to a lower aluminum uptake in the boron fertilized plants. Even considering that plant growth was promoted by boron addition due to aluminum toxicity alleviation, this is the first study reporting boron limitation in natural, noncultivated plant communities and also the first report of this kind in vegetative grasses. These results contribute to disentangling patterns of nutrient limitation among plant species of the species-rich, aluminum-rich, and nutrient-poor Cerrado biome and highlight the potential role of micronutrients, such as boron, for growth of noncrop plants. Understanding how nutrient limitation differs among functional groups in the highly biodiverse areas founded on ancient tropical soils may help managing these plant communities in a changing world.
RESUMEN
Worldwide, alien plant invasions have been intensively studied in the past decades, but mechanisms controlling the invasibility of native communities are not fully understood yet. The stochastic niche hypothesis predicts that species-rich plant communities are less prone to alien plant invasions than species-poor communities, which is supported by some but not all field studies, with some very species-rich communities such as the Brazilian Cerrado becoming heavily invaded. However, species-rich communities potentially contain a greater variety of facilitative interactions in resource exploitation than species-poor communities, from which invasive plants might benefit. This alternative hypothetical mechanism might explain why nutrient-poor, species-rich ecosystems are prone to invasion. Here we show that a high species richness both impedes and promotes invasive plants in the Brazilian Cerrado, using structural equation modelling and data from 38 field sites. We found support for the stochastic niche hypothesis through an observed direct negative influence of species richness on abundance of alien invasive species, but an indirect positive effect of species richness on invasive alien plants through soil phosphatase activity that enhances P availability was also found. These field observations were supported with results from a mesocosm experiment. Root phosphatase activity of plants increased with species richness in the mesocosms, which was associated with greater community P and N uptake. The most prominent alien grass species of the region, Melinis minutiflora, benefited most from the higher N and P availability in the species mixtures. Hence, this study provides a novel explanation of why species-richness may sometimes promote rather than impede invasion, and highlights the need to perform facilitation experiments in multi-species communities.
Asunto(s)
Especies Introducidas/estadística & datos numéricos , Dispersión de las Plantas/fisiología , Poaceae/fisiología , Brasil , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Microbiología del Suelo , Procesos EstocásticosRESUMEN
Nutrient availability is important for plant community composition and diversity, but most studies focus on inorganic nutrients. Far less is known about the impact of nutrients in organic forms such as herbivore dung. Here we show that dung of 11 European herbivore species varies widely in nitrogen (N) and phosphorus (P) concentrations, as well as in C:N:P ratios. We demonstrate that variation in dung quality of five herbivore species influences the diversity and composition of a mesocosm plant community. The impact of dung quality was at least as strong as, or stronger than, the effect of manipulating the quantity of dung by a factor six. Our study supports the hypothesis that both nutrient quantity and nutrient imbalances are important controlling factors for plant species diversity, and stresses the important role of herbivores on plant communities, not only via selective foraging, but also via stoichiometric variation of nutrients in their dung.
Asunto(s)
Herbivoria/fisiología , Plantas/metabolismo , Biodiversidad , Ecosistema , Nitrógeno/metabolismo , Nutrientes/metabolismo , Fósforo/metabolismo , Dinámica PoblacionalRESUMEN
Diversity and productivity of primary producers are known to be influenced simultaneously by resource availability and resource ratio, but the relative importance of these two factors differed among studies and so far only entire phytoplankton communities were investigated which might ignore specific nutrient requirements and stoichiometric plasticity of different functional groups. We measured nutrient availability (DIN, total N [TN], total P [TP]), nutrient imbalance (TN:TP, DIN:TP, N:Pseston), species richness, and abundance of the whole phytoplankton community, as well as those specific for cyanobacteria, diatoms, and dinoflagellates in Cau Hai lagoon in Vietnam. We determined the correlation among these variables, using structural equation modeling. The models applied to the whole phytoplankton community indicated that the nutrient availability (particularly TP and DIN) drove variation in phytoplankton abundance and richness, and that abundance also depended on species richness. The models applied to different functional groups differed considerably from the entire community and among each other, and only a part of the models was significant. The relationship between nutrient availability (mainly TP) and abundance was driven by cyanobacteria, and the relationship between nutrient imbalance (only with N:Pseston) and species richness was driven by diatoms. Remarkably, the positive relationship between species richness and abundance, as consistently observed for the whole phytoplankton community, was only observed for one of the three functional groups (diatoms), indicating that resource complementarity occurs particularly among species of different functional groups. Our results emphasized that nutrient availability (TP and to a lesser extent DIN) as well as nutrient imbalance (albeit only with N:Pseston as proxy) were driving factors for the phytoplankton community in the Cau Hai lagoon and hence alterations in both of these factors leading to a shift in phytoplankton species composition and productivity.
RESUMEN
Ungulate herbivores play a prominent role in maintaining the tree-grass balance in African savannas. Their top-down role through selective feeding on either trees or grasses is well studied, but their bottom-up role through deposition of nutrients in dung and urine has been overlooked. Here, we propose a novel concept of savanna ecosystem functioning in which the balance between trees and grasses is maintained through stoichiometric differences in dung of herbivores that feed on them. We describe a framework in which N2-fixing trees and grasses, as well as ungulate browsing and grazing herbivores, occupy opposite positions in an interconnected cycle of processes. The framework makes the testable assumption that the differences in dung N:P ratio among browsers and grazers are large enough to influence competitive interactions between N2-fixing trees and grasses. Other key elements of our concept are supported with field data from a Kenyan savanna.
RESUMEN
Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups--based on life form or productivity of the habitat--upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal. Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions.
Asunto(s)
Magnoliopsida/fisiología , Metano/química , Suelo/química , Humedales , Biomasa , Ecosistema , Efecto InvernaderoRESUMEN
During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades.