Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 82(4): 816-832.e12, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35081363

RESUMEN

Gene silencing by heterochromatin plays a crucial role in cell identity. Here, we characterize the localization, the biogenesis, and the function of an atypical heterochromatin, which is simultaneously enriched in the typical H3K9me3 mark and in H3K36me3, a histone mark usually associated with gene expression. We identified thousands of dual regions in mouse embryonic stem (ES) cells that rely on the histone methyltransferases SET domain bifurcated 1 (SETDB1) and nuclear set domain (NSD)-containing proteins to generate H3K9me3 and H3K36me3, respectively. Upon SETDB1 removal, dual domains lose both marks, gain signatures of active enhancers, and come into contact with upregulated genes, suggesting that it might be an important pathway by which genes are controlled by heterochromatin. In differentiated tissues, a subset of these dual domains is destabilized and becomes enriched in active enhancer marks, providing a mechanistic insight into the involvement of heterochromatin in the maintenance of cell identity.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Elementos de Facilitación Genéticos , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/enzimología , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Secuenciación de Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación , Ratones , RNA-Seq , Transcriptoma
2.
Mol Cell ; 68(1): 104-117.e6, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985501

RESUMEN

Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/genética , Elongación de la Transcripción Genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Cromatina/química , Cromatina/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Edición Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo
3.
Genome Res ; 31(12): 2170-2184, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34667120

RESUMEN

Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.

4.
Mol Cell ; 55(5): 708-22, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25132174

RESUMEN

Cell type-specific master transcription factors (TFs) play vital roles in defining cell identity and function. However, the roles ubiquitous factors play in the specification of cell identity remain underappreciated. Here we show that the ubiquitous CCAAT-binding NF-Y complex is required for the maintenance of embryonic stem cell (ESC) identity and is an essential component of the core pluripotency network. Genome-wide studies in ESCs and neurons reveal that NF-Y regulates not only genes with housekeeping functions through cell type-invariant promoter-proximal binding, but also genes required for cell identity by binding to cell type-specific enhancers with master TFs. Mechanistically, NF-Y's distinct DNA-binding mode promotes master/pioneer TF binding at enhancers by facilitating a permissive chromatin conformation. Our studies unearth a conceptually unique function for histone-fold domain (HFD) protein NF-Y in promoting chromatin accessibility and suggest that other HFD proteins with analogous structural and DNA-binding properties may function in similar ways.


Asunto(s)
Factor de Unión a CCAAT/fisiología , Cromatina/metabolismo , Histonas/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCAAT/metabolismo , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Ratones , Modelos Genéticos , Nucleosomas/química , Nucleosomas/metabolismo , Células Madre Pluripotentes , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
5.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31853542

RESUMEN

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Asunto(s)
Desarrollo Embrionario/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Diferenciación Celular/genética , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Ratones
6.
BMC Biol ; 19(1): 70, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845831

RESUMEN

BACKGROUND: Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers. RESULTS: Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype. CONCLUSIONS: Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Automático , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Humanos , Recurrencia Local de Neoplasia , Pronóstico , Transferencia de Experiencia en Psicología
7.
Bioinformatics ; 36(20): 5000-5006, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-32910174

RESUMEN

MOTIVATION: Long-read sequencing technologies are invaluable for determining complex RNA transcript architectures but are error-prone. Numerous 'hybrid correction' algorithms have been developed for genomic data that correct long reads by exploiting the accuracy and depth of short reads sequenced from the same sample. These algorithms are not suited for correcting more complex transcriptome sequencing data. RESULTS: We have created a novel reference-free algorithm called Transcript-level Aware Long-Read Correction (TALC) which models changes in RNA expression and isoform representation in a weighted De Bruijn graph to correct long reads from transcriptome studies. We show that transcript-level aware correction by TALC improves the accuracy of the whole spectrum of downstream RNA-seq applications and is thus necessary for transcriptome analyses that use long read technology. AVAILABILITY AND IMPLEMENTATION: TALC is implemented in C++ and available at https://github.com/lbroseus/TALC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
8.
Bioinformatics ; 33(13): 1916-1920, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28203701

RESUMEN

MOTIVATION: DNA binding proteins such as chromatin remodellers, transcription factors (TFs), histone modifiers and co-factors often bind cooperatively to activate or repress their target genes in a cell type-specific manner. Nonetheless, the precise role of cooperative binding in defining cell-type identity is still largely uncharacterized. RESULTS: Here, we collected and analyzed 214 public datasets representing chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of 104 DNA binding proteins in embryonic stem cell (ESC) lines. We classified their binding sites into those proximal to gene promoters and those in distal regions, and developed a web resource called Proximal And Distal (PAD) clustering to identify their co-localization at these respective regions. Using this extensive dataset, we discovered an extensive co-localization of BRG1 and CHD7 at distal but not proximal regions. The comparison of co-localization sites to those bound by either BRG1 or CHD7 alone showed an enrichment of ESC master TFs binding and active chromatin architecture at co-localization sites. Most notably, our analysis reveals the co-dependency of BRG1 and CHD7 at distal regions on regulating expression of their common target genes in ESC. This work sheds light on cooperative binding of TF binding proteins in regulating gene expression in ESC, and demonstrates the utility of integrative analysis of a manually curated compendium of genome-wide protein binding profiles in our online resource PAD. AVAILABILITY AND IMPLEMENTATION: PAD is freely available at http://pad.victorchang.edu.au/ and its source code is available via an open source GPL 3.0 license at https://github.com/VCCRI/PAD/. CONTACT: pengyi.yang@sydney.edu.au or j.ho@victorchang.edu.au. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Factores de Transcripción/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina/métodos , Ratones
9.
Proc Natl Acad Sci U S A ; 111(16): E1581-90, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711389

RESUMEN

Identification of genes associated with specific biological phenotypes is a fundamental step toward understanding the molecular basis underlying development and pathogenesis. Although RNAi-based high-throughput screens are routinely used for this task, false discovery and sensitivity remain a challenge. Here we describe a computational framework for systematic integration of published gene expression data to identify genes defining a phenotype of interest. We applied our approach to rank-order all genes based on their likelihood of determining ES cell (ESC) identity. RNAi-mediated loss-of-function experiments on top-ranked genes unearthed many novel determinants of ESC identity, thus validating the derived gene ranks to serve as a rich and valuable resource for those working to uncover novel ESC regulators. Underscoring the value of our gene ranks, functional studies of our top-hit Nucleolin (Ncl), abundant in stem and cancer cells, revealed Ncl's essential role in the maintenance of ESC homeostasis by shielding against differentiation-inducing redox imbalance-induced oxidative stress. Notably, we report a conceptually novel mechanism involving a Nucleolin-dependent Nanog-p53 bistable switch regulating the homeostatic balance between self-renewal and differentiation in ESCs. Our findings connect the dots on a previously unknown regulatory circuitry involving genes associated with traits in both ESCs and cancer and might have profound implications for understanding cell fate decisions in cancer stem cells. The proposed computational framework, by helping to prioritize and preselect candidate genes for tests using complex and expensive genetic screens, provides a powerful yet inexpensive means for identification of key cell identity genes.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Homeostasis/genética , Animales , Diferenciación Celular/genética , Proliferación Celular , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Estrés Oxidativo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Nucleolina
10.
Nature ; 468(7322): 457-60, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21085182

RESUMEN

The reprogramming of X-chromosome inactivation during the acquisition of pluripotency in vivo and in vitro is accompanied by the repression of Xist, the trigger of X-inactivation, and the upregulation of its antisense counterpart Tsix. We have shown that key factors supporting pluripotency-Nanog, Oct4 and Sox2-bind within Xist intron 1 in undifferentiated embryonic stem cells (ESC) to repress Xist transcription. However, the relationship between transcription factors of the pluripotency network and Tsix regulation has remained unclear. Here we show that Tsix upregulation in embryonic stem cells depends on the recruitment of the pluripotent marker Rex1, and of the reprogramming-associated factors Klf4 and c-Myc, by the DXPas34 minisatellite associated with the Tsix promoter. Upon deletion of DXPas34, binding of the three factors is abrogated and the transcriptional machinery is no longer efficiently recruited to the Tsix promoter. Additional analyses including knockdown experiments further demonstrate that Rex1 is critically important for efficient transcription elongation of Tsix. Hence, distinct embryonic-stem-cell-specific complexes couple X-inactivation reprogramming and pluripotency, with Nanog, Oct4 and Sox2 repressing Xist to facilitate the reactivation of the inactive X, and Klf4, c-Myc and Rex1 activating Tsix to remodel Xist chromatin and ensure random X-inactivation upon differentiation. The holistic pattern of Xist/Tsix regulation by pluripotent factors that we have identified suggests a general direct governance of complex epigenetic processes by the machinery dedicated to pluripotency.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , ARN no Traducido/genética , Transcripción Genética/genética , Regulación hacia Arriba/genética , Animales , Células Madre Embrionarias/citología , Femenino , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Repeticiones de Minisatélite/genética , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Largo no Codificante , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/metabolismo , Inactivación del Cromosoma X/genética
11.
STAR Protoc ; 4(2): 102203, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37000617

RESUMEN

Characterizing transcription factor (TF) genomic colocalization is essential for identifying cooperative binding of TFs in controlling gene expression. Here, we introduce a protocol for using PAD2, an interactive web application that enables the investigation of colocalization of various TFs and chromatin-regulating proteins from mouse embryonic stem cells at various functional genomic regions. We describe steps for accessing and searching the PAD2 database and selecting and submitting genomic regions. We then detail protein colocalization analysis using heatmap and ranked correlation plot. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).1.

12.
Cell Rep ; 38(7): 110357, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172149

RESUMEN

Histone modifications impact final splicing decisions. However, there is little evidence of the driving role of these marks in inducing cell-specific splicing changes. Using CRISPR epigenome editing tools, we show in an epithelial-to-mesenchymal cell reprogramming system (epithelial-to-mesenchymal transition [EMT]) that a single change in H3K27ac or H3K27me3 levels right at the alternatively spliced exon is necessary and sufficient to induce a splicing change capable of recapitulating important aspects of EMT, such as cell motility and invasiveness. This histone-mark-dependent splicing effect is highly dynamic and mediated by direct recruitment of the splicing regulator PTB to its RNA binding sites. These results support a role for H3K27 marks in inducing a change in the cell's phenotype via regulation of alternative splicing. We propose the dynamic nature of chromatin as a rapid and reversible mechanism to coordinate the splicing response to cell-extrinsic cues, such as induction of EMT.


Asunto(s)
Empalme Alternativo/genética , Transición Epitelial-Mesenquimal/genética , Código de Histonas/genética , Acetilación , Secuencia de Bases , Cateninas/metabolismo , Línea Celular , Cromatina/metabolismo , Exones/genética , Femenino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factores de Tiempo , Catenina delta
13.
iScience ; 25(10): 105049, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36124234

RESUMEN

Lysine-specific demethylase 1 (LSD1) is well-known for its role in decommissioning enhancers during mouse embryonic stem cell (ESC) differentiation. Its role in gene promoters remains poorly understood despite its widespread presence at these sites. Here, we report that LSD1 promotes RNA polymerase II (RNAPII) pausing, a rate-limiting step in transcription regulation, in ESCs. We found the knockdown of LSD1 preferentially affects genes with higher RNAPII pausing. Next, we demonstrate that the co-localization sites of LSD1 and MYC, a factor known to regulate pause-release, are enriched for other RNAPII pausing factors. We show that LSD1 and MYC directly interact and MYC recruitment to genes co-regulated with LSD1 is dependent on LSD1 but not vice versa. The co-regulated gene set is significantly enriched for housekeeping processes and depleted of transcription factors compared to those bound by LSD1 alone. Collectively, our integrative analysis reveals a pleiotropic role of LSD1 in promoting RNAPII pausing.

14.
Genome Biol ; 22(1): 307, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749764

RESUMEN

Accurate quantification and detection of intron retention levels require specialized software. Building on our previous software, we create a suite of tools called IRFinder-S, to analyze and explore intron retention events in multiple samples. Specifically, IRFinder-S allows a better identification of true intron retention events using a convolutional neural network, allows the sharing of intron retention results between labs, integrates a dynamic database to explore and contrast available samples, and provides a tested method to detect differential levels of intron retention.


Asunto(s)
Empalme Alternativo , Intrones , Programas Informáticos , Redes Neurales de la Computación , Análisis de Secuencia de ARN
15.
Cancers (Basel) ; 13(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34439127

RESUMEN

The glutamine metabolism has a key role in the regulation of uncontrolled tumour growth. This study aimed to evaluate the expression and prognostic significance of glutaminase in luminal breast cancer (BC). The glutaminase isoforms (GLS/GLS2) were assessed at genomic/transcriptomic levels, using METABRIC (n = 1398) and GeneMiner datasets (n = 4712), and protein using immunohistochemistry in well-characterised cohorts of Oestrogen receptor-positive/HER2-negative BC patients: ductal carcinoma in situ (DCIS; n = 206) and invasive breast cancer (IBC; n = 717). Glutaminase expression was associated with clinicopathological features, patient outcome and glutamine-metabolism-related genes. In DCIS, GLS alone and GLS+/GLS2- expression were risk factors for shorter local recurrence-free interval (p < 0.0001 and p = 0.001, respectively) and remained prognostic factors independent of tumour size, grade and comedo necrosis (p = 0.0008 and p = 0.003, respectively). In IBC, GLS gene copy number gain with high mRNA expression was associated with poor patient outcome (p = 0.011), whereas high GLS2 protein was predictive of a longer disease-free survival (p = 0.006). Glutaminase plays a role in the biological function of luminal BC, particularly GLS in the early non-invasive stage, which could be used as a potential biomarker to predict disease progression and a target for inhibition. Further validation is required to confirm these observations, and functional assessments are needed to explore their specific roles.

16.
Nat Commun ; 10(1): 3072, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296853

RESUMEN

Faithful transcription initiation is critical for accurate gene expression, yet the mechanisms underlying specific transcription start site (TSS) selection in mammals remain unclear. Here, we show that the histone-fold domain protein NF-Y, a ubiquitously expressed transcription factor, controls the fidelity of transcription initiation at gene promoters in mouse embryonic stem cells. We report that NF-Y maintains the region upstream of TSSs in a nucleosome-depleted state while simultaneously protecting this accessible region against aberrant and/or ectopic transcription initiation. We find that loss of NF-Y binding in mammalian cells disrupts the promoter chromatin landscape, leading to nucleosomal encroachment over the canonical TSS. Importantly, this chromatin rearrangement is accompanied by upstream relocation of the transcription pre-initiation complex and ectopic transcription initiation. Further, this phenomenon generates aberrant extended transcripts that undergo translation, disrupting gene expression profiles. These results suggest NF-Y is a central player in TSS selection in metazoans and highlight the deleterious consequences of inaccurate transcription initiation.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Nucleosomas/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética , Animales , Factor de Unión a CCAAT/genética , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias , Técnicas de Silenciamiento del Gen , Ratones , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/metabolismo
17.
Cell Syst ; 8(5): 427-445.e10, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31078527

RESUMEN

Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem cell states. The two states that bookend the pluripotency continuum, naive and primed, are well characterized, but our understanding of the intermediate states and transitions between them remains incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the proteome, phosphoproteome, transcriptome, and epigenome of embryonic stem cells transitioning from naive to primed pluripotency, we find that rapid, acute, and widespread changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, and proteome. Reconstruction of the kinase-substrate networks reveals signaling cascades, dynamics, and crosstalk. Distinct waves of global proteomic changes mark discrete phases of pluripotency, with cell-state-specific surface markers tracking pluripotent state transitions. Our data provide new insights into multi-layered control of the phased progression of pluripotency and a foundation for modeling mechanisms regulating pluripotent state transitions (www.stemcellatlas.org).


Asunto(s)
Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Células Madre Embrionarias/citología , Epigenoma/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Humanos , Proteoma/metabolismo , Transducción de Señal , Transcriptoma/genética
18.
Nat Commun ; 5: 4878, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25209548

RESUMEN

Accumulation of the noncoding RNA Xist on one X chromosome in female cells is a hallmark of X-chromosome inactivation (XCI) in eutherians. Here we uncover an essential function for the ubiquitous autosomal transcription factor Yin-Yang 1 (YY1) in the transcriptional activation of Xist in both human and mouse. We show that loss of YY1 prevents Xist upregulation during the initiation and maintenance of X-inactivation, and that YY1 binds directly the Xist 5' region to trigger the activity of the Xist promoter. Binding of YY1 to the Xist 5' region before XCI competes with the Xist repressor REX1, whereas DNA methylation controls mono-allelic fixation of YY1 to Xist at the onset of XCI. YY1 is thus the first autosomal activating factor involved in a fundamental and conserved pathway of Xist regulation that ensures the asymmetric transcriptional upregulation of the master regulator of XCI.


Asunto(s)
ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética , Factor de Transcripción YY1/metabolismo , Animales , Línea Celular , Células Cultivadas , Metilación de ADN , Femenino , Humanos , Ratones , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Regulación hacia Arriba
19.
J Biol Chem ; 282(7): 5063-5074, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17158869

RESUMEN

The widespread pleiotropic drug resistance (PDR) phenomenon is well described as the long term selection of genetic variants expressing constitutively high levels of membrane transporters involved in drug efflux. However, the transcriptional cascades leading to the PDR phenotype in wild-type cells are largely unknown, and the first steps of this phenomenon are poorly understood. We investigated the transcriptional mechanisms underlying the establishment of an efficient PDR response in budding yeast. We show that within a few minutes of drug sensing yeast elicits an effective PDR response, involving tens of PDR genes. This early PDR response (ePDR) is highly dependent on the Pdr1p transcription factor, which is also one of the major genetic determinants of long term PDR acquisition. The activity of Pdr1p in early drug response is not drug-specific, as two chemically unrelated drugs, benomyl and fluphenazine, elicit identical, Pdr1p-dependent, ePDR patterns. Our data also demonstrate that Pdr1p is an original stress response factor, the DNA binding properties of which do not depend on the presence of drugs. Thus, Pdr1p is a promoter-resident regulator involved in both basal expression and rapid drug-dependent induction of PDR genes.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Farmacorresistencia Fúngica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Transactivadores/biosíntesis , Transcripción Genética/fisiología , Antipsicóticos/farmacología , Benomilo , Proteínas de Unión al ADN/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Flufenazina/farmacología , Fungicidas Industriales/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Factores de Transcripción , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA